Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising

Patch-based low-rank models have shown effective in exploiting spatial redundancy of natural images especially for the application of image denoising. However, two-dimensional low-rank model can not fully exploit the spatio-temporal correlation in larger data sets such as multispectral images and 3D MRIs. In this work, we propose a novel low-rank tensor approximation framework with Laplacian Scale Mixture (LSM) modeling for multi-frame image denoising. First, similar 3D patches are grouped to form a tensor of d-order and high-order Singular Value Decomposition (HOSVD) is applied to the grouped tensor. Then the task of multiframe image denoising is formulated as a Maximum A Posterior (MAP) estimation problem with the LSM prior for tensor coefficients. Both unknown sparse coefficients and hidden LSM parameters can be efficiently estimated by the method of alternating optimization. Specifically, we have derived closed-form solutions for both subproblems. Experimental results on spectral and dynamic MRI images show that the proposed algorithm can better preserve the sharpness of important image structures and outperform several existing state-of-the-art multiframe denoising methods (e.g., BM4D and tensor dictionary learning).

[1]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[2]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[3]  Yi Yang,et al.  Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Caroline Fossati,et al.  Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Pierrick Coupé,et al.  Author manuscript, published in "Journal of Magnetic Resonance Imaging 2010;31(1):192-203" DOI: 10.1002/jmri.22003 Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels , 2010 .

[6]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[7]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[8]  Anand Rangarajan,et al.  Image Denoising Using the Higher Order Singular Value Decomposition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[10]  Shree K. Nayar,et al.  Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum , 2010, IEEE Transactions on Image Processing.

[11]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Guangming Shi,et al.  Nonlocal Image Restoration With Bilateral Variance Estimation: A Low-Rank Approach , 2013, IEEE Transactions on Image Processing.

[13]  Lei Zhang,et al.  Sparsity-based image denoising via dictionary learning and structural clustering , 2011, CVPR 2011.

[14]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[15]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[16]  Karen O. Egiazarian,et al.  Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction , 2013, IEEE Transactions on Image Processing.

[17]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[18]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[19]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[21]  Erik G. Larsson,et al.  The Higher-Order Singular Value Decomposition: Theory and an Application [Lecture Notes] , 2010, IEEE Signal Processing Magazine.

[22]  Salah Bourennane,et al.  Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images , 2008, IEEE Geoscience and Remote Sensing Letters.