Wearable Supercapacitors Printed on Garments

[1]  John Rick,et al.  Ionic liquid polymer electrolytes , 2013 .

[2]  Mats Johansson,et al.  New structural lithium battery electrolytes using thiol–ene chemistry , 2013 .

[3]  Lydie Viau,et al.  Ionogels, ionic liquid based hybrid materials. , 2011, Chemical Society reviews.

[4]  Xinglong Gong,et al.  Creep and recovery behaviors of magnetorheological plastomer and its magnetic-dependent properties , 2012 .

[5]  Wouter van der Wijngaart,et al.  Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. , 2011, Lab on a chip.

[6]  Daniel A. Steingart,et al.  Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects , 2015 .

[7]  Hyo-Jeong Ha,et al.  UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries , 2012 .

[8]  Hyo-Jeong Ha,et al.  A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery , 2011 .

[9]  Se-Hee Kim,et al.  Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries , 2017 .

[10]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[11]  X. Lou,et al.  Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors , 2017 .

[12]  C. Bowman,et al.  Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. , 2010, Chemical Society reviews.

[13]  A. Bandodkar,et al.  Advanced Materials for Printed Wearable Electrochemical Devices: A Review , 2017 .

[14]  Takeo Yamada,et al.  Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives. , 2015, Nano letters.

[15]  Jianjun Luo,et al.  Wearable Textile‐Based In‐Plane Microsupercapacitors , 2016 .

[16]  Chao Gao,et al.  Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics , 2014, Nature Communications.

[17]  S. Magdassi,et al.  Conductive nanomaterials for printed electronics. , 2014, Small.

[18]  Tian Li,et al.  Graphene Oxide‐Based Electrode Inks for 3D‐Printed Lithium‐Ion Batteries , 2016, Advanced materials.

[19]  J. Lewis,et al.  Designing colloidal suspensions for directed materials assembly , 2011 .

[20]  S. Bian,et al.  Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors , 2015 .

[21]  D. Rossi Electronic textiles: a logical step. , 2007 .

[22]  Xuemei Sun,et al.  Smart Electronic Textiles. , 2016, Angewandte Chemie.

[23]  Gareth H. McKinley,et al.  Biphasic Electrode Suspensions for Li‐Ion Semi‐solid Flow Cells with High Energy Density, Fast Charge Transport, and Low‐Dissipation Flow , 2015 .

[24]  Soojin Park,et al.  Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. , 2015, Nano letters.

[25]  Jinyong Wang,et al.  Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. , 2008, ACS nano.

[26]  Zijian Zheng,et al.  Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes , 2015, Nature Communications.

[27]  Ying Shirley Meng,et al.  All‐Printed, Stretchable Zn‐Ag2O Rechargeable Battery via Hyperelastic Binder for Self‐Powering Wearable Electronics , 2017 .

[28]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[29]  B. Yin,et al.  A low-cost wearable yarn supercapacitor constructed by a highly bended polyester fiber electrode and flexible film , 2017 .

[30]  P. Scales,et al.  Ion-specific strength of attractive particle networks , 1999 .

[31]  K. Hata,et al.  Colloidal interaction in ionic liquids: effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[32]  Charles E. Hoyle,et al.  Thiol–enes: Chemistry of the past with promise for the future , 2004 .

[33]  Zhong Lin Wang,et al.  Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors , 2016, Science Advances.

[34]  John A Rogers,et al.  Imprintable, Bendable, and Shape‐Conformable Polymer Electrolytes for Versatile‐Shaped Lithium‐Ion Batteries , 2013, Advanced materials.

[35]  X. Lou,et al.  A Flexible Quasi‐Solid‐State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V2O5 Nanosheets on Carbon Nanofibers , 2015 .

[36]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[37]  Y. Bando,et al.  Cable‐Type Supercapacitors of Three‐Dimensional Cotton Thread Based Multi‐Grade Nanostructures for Wearable Energy Storage , 2013, Advanced materials.

[38]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[39]  Tingrui Pan,et al.  Photopatternable Conductive PDMS Materials for Microfabrication , 2008 .

[40]  Wei Liu,et al.  Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives , 2017, Advanced materials.

[41]  Beop-Min Kim,et al.  Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices. , 2016, ACS applied materials & interfaces.

[42]  Satoshi Yasuda,et al.  A black body absorber from vertically aligned single-walled carbon nanotubes , 2009, Proceedings of the National Academy of Sciences.

[43]  Shaohui Li,et al.  A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. , 2017, Nanoscale.

[44]  Takuzo Aida,et al.  Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes , 2003, Science.

[45]  Keun-Ho Choi,et al.  Thin, Deformable, and Safety‐Reinforced Plastic Crystal Polymer Electrolytes for High‐Performance Flexible Lithium‐Ion Batteries , 2014 .

[46]  Jung Woo Lee,et al.  Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring , 2014, Nature Communications.

[47]  Seeram Ramakrishna,et al.  Textile energy storage: Structural design concepts, material selection and future perspectives , 2016 .

[48]  K. Hata,et al.  Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure. , 2008, The journal of physical chemistry. B.

[49]  Sang-Young Lee,et al.  All-inkjet-printed, solid-state flexible supercapacitors on paper , 2016 .

[50]  Seungmin Hyun,et al.  Polypyrrole-MnO₂-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. , 2015, ACS applied materials & interfaces.

[51]  Corie Lynn Cobb,et al.  Additive Manufacturing: Rethinking Battery Design , 2016 .

[52]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[53]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[54]  Qiyao Huang,et al.  Textile‐Based Electrochemical Energy Storage Devices , 2016 .

[55]  Menghe Miao,et al.  Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. , 2014, ACS nano.

[56]  Keun-Ho Choi,et al.  A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries , 2014 .

[57]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[58]  C. Kan,et al.  Enhancing the capacitive performance of a textile-based CNT supercapacitor , 2014 .