Ocean‐Scale Interactions From Space

Satellite observations of the last two decades have led to a major breakthrough emphasizing the existence of a strongly energetic mesoscale turbulent eddy field in all the oceans. This ocean mesoscale turbulence is characterized by cyclonic and anticyclonic eddies (with a 100‐ to 300‐km size and depth scales of ∼500–1,000 m) that capture approximatively 80% of the total kinetic energy and is now known to significantly impact the large‐scale ocean circulation, the ocean's carbon storage, the air‐sea interactions, and therefore the Earth climate as a whole. However, ocean mesoscale turbulence revealed by satellite observations has properties that differ from those related to classical geostrophic turbulence theories. In the last decade, a large number of theoretical and numerical studies has pointed to submesoscale surface fronts (1–50 km), not resolved by satellite altimeters, as the key suspect explaining these discrepancies. Submesoscale surface fronts have been shown to impact mesoscale eddies and the large‐scale ocean circulation in counterintuitive ways, leading in particular to up‐gradient fluxes. The ocean engine is now known to involve energetic scale interactions, over a much broader range of scales than expected one decade ago, from 1 to 5,000 km. New space observations with higher spatial resolution are however needed to validate and improve these recent theoretical and numerical results.

[1]  D. Menemenlis,et al.  Characterizing the Transition From Balanced to Unbalanced Motions in the Southern California Current , 2019, Journal of Geophysical Research: Oceans.

[2]  F. Marin,et al.  Observations and Mechanisms for the Formation of Deep Equatorial and Tropical Circulation , 2019, Earth and Space Science.

[3]  Dimitris Menemenlis,et al.  On the Spatial Scales to be Resolved by the Surface Water and Ocean Topography Ka-Band Radar Interferometer , 2019, Journal of Atmospheric and Oceanic Technology.

[4]  G. Lapeyre,et al.  Storm Track Response to Oceanic Eddies in Idealized Atmospheric Simulations , 2018, Journal of Climate.

[5]  D. Menemenlis,et al.  Partitioning Ocean Motions Into Balanced Motions and Internal Gravity Waves: A Modeling Study in Anticipation of Future Space Missions , 2018, Journal of Geophysical Research: Oceans.

[6]  J. McWilliams,et al.  Dampening of Submesoscale Currents by Air-Sea Stress Coupling in the Californian Upwelling System , 2018, Scientific Reports.

[7]  New Frontiers in Operational Oceanography , 2018 .

[8]  G. Wagner,et al.  Stimulated generation: extraction of energy from balanced flow by near-inertial waves , 2018, Journal of Fluid Mechanics.

[9]  Bryan W. Stiles,et al.  Estimating Ocean Vector Winds and Currents Using a Ka-Band Pencil-Beam Doppler Scatterometer , 2018, Remote. Sens..

[10]  Dimitris Menemenlis,et al.  Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean , 2018 .

[11]  Dimitris Menemenlis,et al.  Ocean submesoscales as a key component of the global heat budget , 2018, Nature Communications.

[12]  Dimitris Menemenlis,et al.  Spectral decomposition of internal gravity wave sea surface height in global models , 2017 .

[13]  L. Thomas,et al.  On the modifications of near-inertial waves at fronts: implications for energy transfer across scales , 2017, Ocean Dynamics.

[14]  J. Delouis,et al.  Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept , 2017 .

[15]  E. Chassignet,et al.  Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability , 2017 .

[16]  G. Lapeyre,et al.  Relative dispersion in generalized two-dimensional turbulence , 2017, Journal of Fluid Mechanics.

[17]  P. Klein,et al.  Low-Mode Internal Tide Propagation in a Turbulent Eddy Field , 2017 .

[18]  Alan J. Wallcraft,et al.  Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies , 2017 .

[19]  G. Lapeyre,et al.  Surface Quasi-Geostrophy , 2017 .

[20]  J. McWilliams,et al.  Stimulated Imbalance and the Enhancement of Eddy Kinetic Energy Dissipation by Internal Waves , 2017 .

[21]  B. Qiu,et al.  Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean , 2017, Nature Communications.

[22]  L. Centurioni,et al.  Advances in the Application of Surface Drifters. , 2017, Annual review of marine science.

[23]  D. Menemenlis,et al.  Seasonality of submesoscale dynamics in the Kuroshio Extension , 2016 .

[24]  G. Maze,et al.  Intensification of Upper-Ocean Submesoscale Turbulence through Charney Baroclinic Instability , 2016 .

[25]  G. Wagner,et al.  A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic , 2016, Journal of Fluid Mechanics.

[26]  Rosemary Morrow,et al.  Mesoscale resolution capability of altimetry: Present and future , 2016 .

[27]  James C. McWilliams,et al.  Submesoscale currents in the ocean , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Christian E. Buckingham,et al.  Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer Instabilities from Gliders , 2016 .

[29]  Lee-Lueng Fu,et al.  Reconstructability of Three-Dimensional Upper-Ocean Circulation from SWOT Sea Surface Height Measurements , 2016 .

[30]  Christine Gommenginger,et al.  Wind‐wave‐induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign , 2016 .

[31]  Dimitris Menemenlis,et al.  Mesoscale to submesoscale wavenumber spectra in Drake Passage , 2016 .

[32]  H. Simmons,et al.  Near-Inertial Internal Gravity Waves in the Ocean. , 2016, Annual review of marine science.

[33]  D. McGillicuddy,et al.  Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. , 2016, Annual review of marine science.

[34]  Amala Mahadevan,et al.  The Impact of Submesoscale Physics on Primary Productivity of Plankton. , 2016, Annual review of marine science.

[35]  Baylor Fox-Kemper,et al.  The role of mixed-layer instabilities in submesoscale turbulence , 2015, Journal of Fluid Mechanics.

[36]  Haiming Xu,et al.  Atmospheric responses to oceanic eddies in the Kuroshio Extension region , 2015 .

[37]  A. Wallcraft,et al.  Toward an internal gravity wave spectrum in global ocean models , 2015 .

[38]  I. Frenger,et al.  Atmospheric Response to Mesoscale Sea Surface Temperature Anomalies: Assessment of Mechanisms and Coupling Strength in a High-Resolution Coupled Model over the South Atlantic* , 2015 .

[39]  Jonathan Gula,et al.  Seasonality in submesoscale turbulence , 2015, Nature Communications.

[40]  Guilherme P. Castelão,et al.  The signature of mesoscale eddies on the air‐sea turbulent heat fluxes in the South Atlantic Ocean , 2015 .

[41]  Aurelien Ponte,et al.  Incoherent signature of internal tides on sea level in idealized numerical simulations , 2015 .

[42]  N. Grisouard,et al.  Critical and near-critical reflections of near-inertial waves off the sea surface at ocean fronts , 2015, Journal of Fluid Mechanics.

[43]  Lee-Lueng Fu,et al.  Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping , 2015 .

[44]  L. Thomas,et al.  Resonant Generation and Energetics of Wind-Forced Near-Inertial Motions in a Geostrophic Flow , 2015 .

[45]  Bo Qiu,et al.  Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere , 2014, Nature Communications.

[46]  J. Vanneste,et al.  A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow , 2014, Journal of Fluid Mechanics.

[47]  Y. Sasai,et al.  Seasonal Mesoscale and Submesoscale Eddy Variability along the North Pacific Subtropical Countercurrent , 2014 .

[48]  Gary D. Egbert,et al.  Accuracy assessment of global barotropic ocean tide models , 2014 .

[49]  Helga S. Huntley,et al.  Submesoscale dispersion in the vicinity of the Deepwater Horizon spill , 2014, Proceedings of the National Academy of Sciences.

[50]  C. Wunsch,et al.  A Multidimensional Spectral Description of Ocean Variability , 2014 .

[51]  James C. McWilliams,et al.  Global heat and salt transports by eddy movement , 2014, Nature Communications.

[52]  Lee-Lueng Fu,et al.  On the Transition from Profile Altimeter to Swath Altimeter for Observing Global Ocean Surface Topography , 2014 .

[53]  G. Egbert,et al.  Time-Variable Refraction of the Internal Tide at the Hawaiian Ridge , 2014 .

[54]  Le Traon,et al.  From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography , 2013 .

[55]  Jean-Michel Brankart,et al.  On the inversion of submesoscale tracer fields to estimate the surface ocean circulation , 2013 .

[56]  Reto Knutti,et al.  Imprint of Southern Ocean eddies on winds, clouds and rainfall , 2013 .

[57]  T. Özgökmen,et al.  Seasonality of the submesoscale dynamics in the Gulf Stream region , 2013, Ocean Dynamics.

[58]  J. Toole,et al.  A near‐inertial mode observed within a Gulf Stream warm‐core ring , 2013 .

[59]  Robert B. Scott,et al.  On Eddy Viscosity, Energy Cascades, and the Horizontal Resolution of Gridded Satellite Altimeter Products* , 2013 .

[60]  Yongsheng Xu,et al.  The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height , 2012 .

[61]  A. Czaja,et al.  The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport , 2012 .

[62]  A. Wallcraft,et al.  Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides , 2012 .

[63]  Rosemary Morrow,et al.  Recent advances in observing mesoscale ocean dynamics with satellite altimetry , 2012 .

[64]  P. Fischer,et al.  On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows , 2012 .

[65]  Adrian P. Martin,et al.  Bringing physics to life at the submesoscale , 2012 .

[66]  M. Ghil,et al.  Atmospheric Dynamics Triggered by an Oceanic SST Front in a Moist Quasigeostrophic Model , 2012 .

[67]  J. LaCasce Surface Quasigeostrophic Solutions and Baroclinic Modes with Exponential Stratification , 2012 .

[68]  G. Flierl,et al.  Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain , 2012 .

[69]  R. Ferrari,et al.  Macroturbulent Equilibration in a Thermally Forced Primitive Equation System , 2012 .

[70]  J. McWilliams,et al.  Properties of Steady Geostrophic Turbulence with Isopycnal Outcropping , 2012 .

[71]  D. Chelton,et al.  Global observations of nonlinear mesoscale eddies , 2011 .

[72]  M. Hecht,et al.  Emergence of Wind-Driven Near-Inertial Waves in the Deep Ocean Triggered by Small-Scale Eddy Vorticity Structures , 2011 .

[73]  J. Marshall,et al.  Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean , 2011 .

[74]  Raffaele Ferrari,et al.  A Frontal Challenge for Climate Models , 2011, Science.

[75]  R. Lumpkin,et al.  Surface drifter pair spreading in the North Atlantic , 2010 .

[76]  Frank O. Bryan,et al.  Frontal scale air-sea interaction in high-resolution coupled climate models , 2010 .

[77]  Igor Mezić,et al.  A New Mixing Diagnostic and Gulf Oil Spill Movement , 2010, Science.

[78]  S. De Monte,et al.  Fluid dynamical niches of phytoplankton types , 2010, Proceedings of the National Academy of Sciences.

[79]  C. Wunsch Toward a Midlatitude Ocean Frequency–Wavenumber Spectral Density and Trend Determination , 2010 .

[80]  B. Samuels,et al.  Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations , 2010 .

[81]  K. Polzin,et al.  TOWARD REGIONAL CHARACTERIZATIONS OF THE OCEANIC INTERNAL WAVEFIELD , 2010, 1007.2113.

[82]  M. Jeroen Molemaker,et al.  Balanced and unbalanced routes to dissipation in an equilibrated Eady flow , 2010, Journal of Fluid Mechanics.

[83]  C. Wunsch The oceanic variability spectrum and transport trends , 2009 .

[84]  L. Fu Pattern and velocity of propagation of the global ocean eddy variability , 2009 .

[85]  J. McWilliams,et al.  Cold filamentary intensification and oceanic surface convergence lines , 2009 .

[86]  T. Schneider,et al.  Scales of Linear Baroclinic Instability and Macroturbulence in Dry Atmospheres , 2009 .

[87]  Bertrand Chapron,et al.  Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height , 2009 .

[88]  C. Eden,et al.  Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy , 2009 .

[89]  Patrice Klein,et al.  The oceanic vertical pump induced by mesoscale and submesoscale turbulence. , 2009, Annual review of marine science.

[90]  R. Greatbatch,et al.  On the seasonal variability of eddy kinetic energy in the Gulf Stream region , 2008 .

[91]  Lee-Lueng Fu,et al.  Observing Oceanic Submesoscale Processes From Space , 2008 .

[92]  Patrice Klein,et al.  Upper Ocean Turbulence from High-Resolution 3D Simulations , 2008 .

[93]  Hisashi Nakamura,et al.  On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation , 2008 .

[94]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[95]  James C. McWilliams,et al.  Surface kinetic energy transfer in surface quasi-geostrophic flows , 2008, Journal of Fluid Mechanics.

[96]  G. Dibarboure,et al.  Do Altimeter Wavenumber Spectra Agree with the Interior or Surface Quasigeostrophic Theory , 2008 .

[97]  Nikolai Maximenko,et al.  Stationary mesoscale jet‐like features in the ocean , 2008 .

[98]  Shoshiro Minobe,et al.  Influence of the Gulf Stream on the troposphere , 2008, Nature.

[99]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[100]  K. S. Smith The geography of linear baroclinic instability in Earth's oceans , 2007 .

[101]  R. K. Scott,et al.  Local and nonlocal advection of a passive scalar , 2006 .

[102]  G. Vallis Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[103]  R Tulloch,et al.  A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause , 2006, Proceedings of the National Academy of Sciences.

[104]  Joseph H. LaCasce,et al.  Estimating subsurface horizontal and vertical velocities from sea-surface temperature , 2006 .

[105]  Patrice Klein,et al.  Oceanic Restratification Forced by Surface Frontogenesis , 2006 .

[106]  T. Schneider,et al.  Self-Organization of Atmospheric Macroturbulence into Critical States of Weak Nonlinear Eddy-Eddy Interactions , 2006 .

[107]  Patrice Klein,et al.  Dynamics of the Upper Oceanic Layers in Terms of Surface Quasigeostrophy Theory , 2006 .

[108]  R. Scott,et al.  Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry , 2005 .

[109]  H. Sasaki,et al.  Observational evidence of alternating zonal jets in the world ocean , 2005 .

[110]  Bo Qiu,et al.  Eddy-Induced Heat Transport in the Subtropical North Pacific from Argo, TMI, and Altimetry Measurements , 2005 .

[111]  D. Chelton,et al.  Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds , 2004, Science.

[112]  P. Klein,et al.  Emergence of cyclonic structures due to the interaction between near‐inertial oscillations and mesoscale eddies , 2003 .

[113]  G. Lapeyre,et al.  Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence. , 2002, Chaos.

[114]  C. Snyder,et al.  A New Surface Model for Cyclone–Anticyclone Asymmetry , 2002 .

[115]  Patrice Klein,et al.  Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime , 2001 .

[116]  Geoffrey K. Vallis,et al.  The scales and equilibration of midocean eddies : Freely evolving flow , 2001 .

[117]  Patrick J. Hogan,et al.  Impact of 1/8° to 1/64° resolution on Gulf Stream model–data comparisons in basin-scale subtropical Atlantic Ocean models , 2000 .

[118]  G. Lapeyre,et al.  Does the tracer gradient vector align with the strain eigenvectors in 2D turbulence , 1999 .

[119]  James C. McWilliams,et al.  Lagrangian accelerations in geostrophic turbulence , 1998, Journal of Fluid Mechanics.

[120]  Patrice Klein,et al.  An exact criterion for the stirring properties of nearly two-dimensional turbulence , 1998 .

[121]  W. Young,et al.  Propagation of near-inertial oscillations through a geostrophic flow , 1997 .

[122]  C. Wunsch,et al.  How well does a 1/4° global circulation model simulate large-scale oceanic observations? , 1996 .

[123]  Richard Smith,et al.  Global Ocean Circulation from Satellite Altimetry and High-Resolution Computer Simulation , 1996 .

[124]  Raymond T. Pierrehumbert,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[125]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[126]  M. Juckes Quasigeostrophic Dynamics of the Tropopause , 1994 .

[127]  K. Swanson,et al.  Spectra of local and nonlocal two-dimensional turbulence , 1994 .

[128]  Andrew J. Watson,et al.  Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment , 1993, Nature.

[129]  R. Panetta,et al.  Zonal Jets in Wide Baroclinically Unstable Regions: Persistence and Scale Selection , 1993 .

[130]  James C. McWilliams,et al.  Statistical properties of decaying geostrophic turbulence , 1989, Journal of Fluid Mechanics.

[131]  D. Haidvogel,et al.  Numerical Simulations of the Vertical Structure of Quasi-Geostrophic Turbulence , 1986 .

[132]  J. McWilliams,et al.  An Objective Analysis of the POLYMODE Local Dynamics Experiment. Part II: Streamfunction and Potential Vorticity Fields during the Intensive Period , 1986 .

[133]  E. Kunze Near-Inertial Wave Propagation In Geostrophic Shear , 1985 .

[134]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[135]  C. Garrett On the initial streakness of a dispersing tracer in two- and three-dimensional turbulence , 1983 .

[136]  L. Fu On the wave number spectrum of oceanic mesoscale variability observed by the SEASAT altimeter , 1983 .

[137]  G. Flierl,et al.  Nonlinear energy and enstrophy transfers in a realistically stratified ocean , 1980 .

[138]  W. Blumen,et al.  Uniform Potential Vorticity Flow: Part I. Theory of Wave Interactions and Two-Dimensional Turbulence , 1978 .

[139]  P. Rhines Waves and turbulence on a beta-plane , 1975, Journal of Fluid Mechanics.

[140]  A. E. Gill,et al.  Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies , 1974 .

[141]  P. Stone Frontogenesis by Horizontal Wind Deformation Fields , 1966 .

[142]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[143]  B. Qiu Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean , 2018 .

[144]  R. Ray,et al.  M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry , 2016 .

[145]  D. Straub,et al.  Forced Near-Inertial Motion and Dissipation of Low-Frequency Kinetic Energy in a Wind-Driven Channel Flow , 2016 .

[146]  T. Özgökmen,et al.  Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models , 2012 .

[147]  Gurvan Madec,et al.  Modifications of gyre circulation by sub-mesoscale physics , 2010 .

[148]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[149]  C. Wunsch Ocean observations and the climate forecast problem , 2002 .

[150]  G. Lapeyre,et al.  Dynamics of the orientation of active and passive scalars in two-dimensional turbulence , 2001 .

[151]  Gary T. Mitchum,et al.  Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges , 1997 .

[152]  K. Swanson,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[153]  R. Salmon,et al.  Baroclinic instability and geostrophic turbulence , 1980 .

[154]  B. Hoskins Baroclinic waves and frontogenesis Part I: Introduction and Eady waves , 1976 .

[155]  J. Lumley,et al.  A First Course in Turbulence , 1972 .