Adaptive Pulse Compression Technique for X-Band Phased Array Weather Radar

Weather radar commonly uses a matched filter (MF) method to improve the range resolution and signal-to-noise ratio. A X-band phased array weather radar (PAWR), which is capable of 3-D precipitation observations in less than 30 s, is in operation at the Osaka University. The PAWR uses the MF method. In weather radar systems, the magnitude of the range sidelobes is an important topic because it can cause overestimation of the received power from a target, such as precipitation or ground clutter echoes. We propose a minimum mean square error (MMSE)-based pulse compression method to reduce the range sidelobes of the PAWR. We evaluated an MF, an MF with a raised-cosine window, and MMSE methods using numerical simulations and actual measurement data obtained from the PAWR. The results show that the MMSE method is clearly superior to the MF and MF with a raised-cosine filter methods when considering the reduction in the range sidelobes.