Supersymmetry and the LHC inverse problem

Given experimental evidence at the LHC for physics beyond the standard model, how can we determine the nature of the underlying theory? We initiate an approach to studying the ``inverse map from the space of LHC signatures to the parameter space of theoretical models within the context of low-energy supersymmetry, using 1808 LHC observables including essentially all those suggested in the literature and a 15 dimensional parametrization of the supersymmetric standard model. We show that the inverse map of a point in signature space consists of a number of isolated islands in parameter space, indicating the existence of ``degeneracies — qualitatively different models with the same LHC signatures. The degeneracies have simple physical characterizations, largely reflecting discrete ambiguities in electroweak-ino spectrum, accompanied by small adjustments for the remaining soft parameters. The number of degeneracies falls in the range 1 < d < 100, depending on whether or not sleptons are copiously produced in cascade decays. This number is large enough to represent a clear challenge but small enough to encourage looking for new observables that can further break the degeneracies and determine at the LHC most of the SUSY physics we care about. Degeneracies occur because signatures are not independent, and our approach allows testing of any new signature for its independence. Our methods can also be applied to any other theory of physics beyond the standard model, allowing one to study how model footprints differ in signature space and to test ways of distinguishing qualitatively different possibilities for new physics at the LHC.

[1]  P. Bechtle,et al.  SUSY Parameter Measurements with Fittino , 2005, hep-ph/0511137.

[2]  A. Barr,et al.  Measuring slepton spin at the LHC , 2005, hep-ph/0511115.

[3]  B. Gjelsten,et al.  Determining masses of supersymmetric particles , 2005, hep-ph/0511008.

[4]  C. Csáki,et al.  The super-little Higgs , 2005, hep-ph/0510294.

[5]  Hsin-Chia Cheng,et al.  Top partners in little Higgs theories with T-parity , 2005, hep-ph/0510225.

[6]  G. Kane,et al.  Is it SUSY , 2005, hep-ph/0510204.

[7]  L. Senatore,et al.  Minimal model for dark matter and unification , 2005, hep-ph/0510064.

[8]  T. Roy,et al.  Naturally heavy superpartners and a Little Higgs , 2005, hep-ph/0509357.

[9]  K. Matchev,et al.  Discrimination of supersymmetry and universal extra dimensions at hadron colliders , 2005, hep-ph/0509246.

[10]  C. Lester,et al.  Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables. , 2005, hep-ph/0508143.

[11]  L. Senatore Hierarchy from baryogenesis , 2005, hep-ph/0507257.

[12]  B. Webber,et al.  Distinguishing Spins in Supersymmetric and Universal Extra Dimension Models at the Large Hadron Collider , 2005, hep-ph/0507170.

[13]  R. Harnik,et al.  Natural electroweak breaking from a mirror symmetry. , 2005, Physical review letters.

[14]  P. Schuster,et al.  Is dark matter heavy because of electroweak symmetry breaking? Revisiting heavy neutrinos , 2005, hep-ph/0506079.

[15]  G. Kane How Can We Go From Hadron Collider Data Toward the Underlying Theory That Extends the Standard Model? After the Champagne , 2005, hep-ph/0504257.

[16]  Y. Nomura,et al.  A minimally fine-tuned supersymmetric standard model , 2005, hep-ph/0504095.

[17]  Andrea Romanino,et al.  Erratum to: "Split supersymmetry" [Nucl. Phys. B 699 (2004) 65] , 2005 .

[18]  S. Kachru,et al.  Predictive Landscapes and New Physics at a TeV , 2005, hep-th/0501082.

[19]  B. Gjelsten,et al.  Measurement of the Gluino Mass via Cascade Decays for SPS 1a , 2005, hep-ph/0501033.

[20]  A. Pomarol,et al.  The Minimal Composite Higgs Model , 2004, hep-ph/0412089.

[21]  T. Goto Neutralino polarization effect in the squark cascade decay at LHC , 2004, hep-ph/0411360.

[22]  M. Spiropulu,et al.  Physics interplay of the LHC and the ILC , 2004, hep-ph/0410364.

[23]  B. Gjelsten,et al.  Measurement of SUSY masses via cascade decays for SPS 1a , 2004, hep-ph/0410303.

[24]  S. Dimopoulos,et al.  Aspects of Split Supersymmetry , 2004, hep-ph/0409232.

[25]  B. Allanach,et al.  Genetic algorithms and experimental discrimination of SUSY models , 2004, hep-ph/0406277.

[26]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[27]  A. Barr Using lepton charge asymmetry to investigate the spin of supersymmetric particles at the LHC , 2004 .

[28]  A. Barr Determining the spin of supersymmetric particles at the LHC using lepton charge asymmetry , 2004, hep-ph/0405052.

[29]  R. Lafaye,et al.  SFITTER: SUSY parameter analysis at LHC and LC , 2004, hep-ph/0404282.

[30]  U. Pennsylvania,et al.  Relating incomplete data and incomplete theory , 2003, hep-ph/0312248.

[31]  Hsin-Chia Cheng,et al.  TeV symmetry and the little hierarchy problem , 2003, hep-ph/0308199.

[32]  C. Csáki,et al.  Towards a realistic model of Higgsless electroweak symmetry breaking. , 2003, Physical review letters.

[33]  R. Sundrum,et al.  RS1, custodial isospin and precision tests , 2003, hep-ph/0308036.

[34]  Hsin-Chia Cheng,et al.  Bosonic supersymmetry? Getting fooled at the CERN LHC , 2002, hep-ph/0205314.

[35]  F. Moortgat,et al.  The Snowmass Points and Slopes: benchmarks for SUSY searches , 2002, hep-ph/0202233.

[36]  J. Ryckebusch,et al.  A(e,e'p) reactions at GeV energies , 2001, nucl-th/0106060.

[37]  Howard Georgi,et al.  Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.

[38]  Bogdan A. Dobrescu,et al.  Bounds on Universal Extra Dimensions , 2000, hep-ph/0012100.

[39]  S. Mrenna,et al.  High-energy physics event generation with PYTHIA 6.1 , 2000, hep-ph/0010017.

[40]  F. Paige,et al.  Anomaly mediated SUSY breaking at the LHC , 2000, hep-ph/0001249.

[41]  Amendolia,et al.  Measurement of B-0-(B)over-bar(0) flavor oscillations using jet-charge and lepton flavor tagging in p(p)over-bar collisions at root s=1.8 TeV , 1999 .

[42]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[43]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[44]  J. Wells,et al.  Phenomenological Consequences of Supersymmetry with Anomaly-Induced Masses , 1999, hep-ph/9904378.

[45]  E. al.,et al.  Measurement of the B{sup degree}-{ovr B}{sup degree} flavor oscillations using jet-charge and lepton flavor tagging in p{ovr p} collisions at {radical ovr s} = 1.8 TeV. , 1999, hep-ex/9903011.

[46]  I. Hinchliffe,et al.  Measurements in gauge mediated SUSY breaking models at the CERN LHC , 1998, hep-ph/9812233.

[47]  Savas Dimopoulos,et al.  Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity , 1998, hep-ph/9807344.

[48]  S. Dimopoulos,et al.  New dimensions at a millimeter to a Fermi and superstrings at a TeV , 1998, hep-ph/9804398.

[49]  Savas Dimopoulos,et al.  The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.

[50]  Shapiro,et al.  Precision SUSY measurements at CERN LHC , 1996, hep-ph/9610544.

[51]  P. Eerola B-physics potential of ATLAS: an update , 1996, hep-ex/9610002.

[52]  Scott D. Thomas,et al.  Sparticle spectroscopy and electroweak symmetry breaking with gauge-mediated supersymmetry breaking , 1996, hep-ph/9609434.

[53]  Baer,et al.  Signals for minimal supergravity at the CERN Large Hadron Collider. II. Multilepton channels. , 1995, Physical review. D, Particles and fields.

[54]  Kane,et al.  Possible signals of constrained minimal supersymmetry at a high luminosity Fermilab Tevatron collider. , 1995, Physical review. D, Particles and fields.

[55]  Burke,et al.  Measurement of the parity-violation parameter Ab from the left-right forward-backward asymmetry of b quark production in Z0 decays using a momentum-weighted track-charge technique. , 1995, Physical review letters.

[56]  Baer,et al.  Signals for minimal supergravity at the CERN Large Hadron Collider: Multijet plus missing energy channel. , 1995, Physical review. D, Particles and fields.

[57]  G. E. Richards,et al.  Measurement of the time dependence of B0d↔B0d mixing using a jet charge technique , 1994 .

[58]  Savas Dimopoulos,et al.  Softly Broken Supersymmetry and SU(5) , 1981 .

[59]  Leonard Susskind,et al.  Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory , 1979 .

[60]  Steven Weinberg,et al.  Implications of dynamical symmetry breaking: An addendum , 1979 .

[61]  P. Abreu,et al.  Measurement of the B-d(0) oscillation frequency using kaons, leptons and jet charge , 1996 .