Continuous adaptive finite-time modified function projective lag synchronization of uncertain hyperchaotic systems

This paper introduces an adaptive control method for finite-time modified function projective lag synchronization of uncertain hyperchaotic systems. Based upon novel nonsingular terminal sliding mode surfaces and the adaptive super-twisting algorithm, a controller is proposed to provide robustness, high precision and fast and finite-time modified function projective lag synchronization without the knowledge of the upper bound of uncertainties and unknown external disturbances. In addition, chattering is significantly attenuated due to the inherited continuity of the proposed controller. The global stability and finite-time convergence are rigorously proven. Numerical simulation is presented to demonstrate the effectiveness and feasibility of the proposed strategy and to verify the theoretical results.

[1]  Manfeng Hu,et al.  Hybrid projective synchronization in a chaotic complex nonlinear system , 2008, Math. Comput. Simul..

[2]  Kaibiao Sun,et al.  Nonlinear and chaos control of a micro-electro-mechanical system by using second-order fast terminal sliding mode control , 2013, Commun. Nonlinear Sci. Numer. Simul..

[3]  Zhenyuan Xu,et al.  Function projective synchronization in drive–response dynamical network , 2010 .

[4]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[5]  Mohammad Pourmahmood Aghababa,et al.  Adaptive Finite-Time Synchronization of Non-Autonomous Chaotic Systems With Uncertainty , 2013 .

[6]  Xingyuan Wang,et al.  A hyperchaos generated from Lorenz system , 2008 .

[7]  M. P. Aghababa,et al.  A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs , 2012 .

[8]  Jie Chen,et al.  Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control , 2014 .

[9]  Gangquan Si,et al.  Adaptive synchronization design for uncertain chaotic systems in the presence of unknown system parameters: a revisit , 2013 .

[10]  K. Sudheer,et al.  Modified function projective synchronization of hyperchaotic systems through Open-Plus-Closed-Loop coupling , 2010 .

[11]  Guohui Li Modified projective synchronization of chaotic system , 2007 .

[12]  Jaime A. Moreno,et al.  Strict Lyapunov Functions for the Super-Twisting Algorithm , 2012, IEEE Transactions on Automatic Control.

[13]  K. Sudheer,et al.  Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters , 2009 .

[14]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[15]  Leonid M. Fridman,et al.  Stability notions and Lyapunov functions for sliding mode control systems , 2014, J. Frankl. Inst..

[16]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[17]  Zhenya Yan,et al.  Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. , 2005, Chaos.

[18]  Ju-Jang Lee,et al.  Comments on "A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators" , 1996, IEEE Trans. Autom. Control..

[19]  Xiangqing Chen,et al.  Adaptive finite-time control of chaos in permanent magnet synchronous motor with uncertain parameters , 2014 .

[20]  Albert C. J. Luo,et al.  A theory for synchronization of dynamical systems , 2009 .

[21]  Qingshuang Zeng,et al.  A general method for modified function projective lag synchronization in chaotic systems , 2010 .

[22]  A. N. Njah,et al.  Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques , 2010 .

[23]  Jianying Yang,et al.  Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme , 2011 .

[24]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[25]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[26]  Uchechukwu E. Vincent,et al.  Synchronization of identical and non-identical 4-D chaotic systems using active control , 2008 .

[27]  Yi Shen,et al.  Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control , 2016, Nonlinear Dynamics.

[28]  Guiyuan Fu,et al.  Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance , 2012 .

[29]  李铁山,et al.  Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems , 2013 .

[30]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[31]  Jianping Yan,et al.  Generalized projective synchronization of a unified chaotic system , 2005 .

[32]  Salah Laghrouche,et al.  Adaptive Second-Order Sliding Mode Observer-Based Fault Reconstruction for PEM Fuel Cell Air-Feed System , 2015, IEEE Transactions on Control Systems Technology.

[33]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[34]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[35]  Linquan Bai,et al.  Finite-time synchronization control and parameter identification of uncertain permanent magnet synchronous motor , 2016, Neurocomputing.

[36]  G. Lu,et al.  Modified function projective lag synchronization of chaotic systems with disturbance estimations , 2013 .

[37]  Ruiqi Wang,et al.  Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties , 2013, Kybernetika.

[38]  Hongtao Lu,et al.  Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters , 2011 .

[39]  Yong Wu,et al.  Robust adaptive finite-time synchronization of nonlinear resource management system , 2016, Neurocomputing.

[40]  Choon Ki Ahn,et al.  An H∞ approach to anti-synchronization for chaotic systems , 2009 .

[41]  Guoshan Zhang,et al.  Adaptive finite-time control for hyperchaotic Lorenz–Stenflo systems , 2015 .

[42]  Song Zheng,et al.  Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters , 2010 .