A New Piecewise Linear Hyperchaotic Circuit

When the polarity information in diffusionless Lorenz equations is preserved or removed, a new piecewise linear hyperchaotic system results with only signum and absolute-value nonlinearities. Dynamical equations have seven terms without any quadratic or higher order polynomials and, to our knowledge, are the simplest hyperchaotic system. Therefore, a relatively simple hyperchaotic circuit using diodes is constructed. The circuit requires no multipliers or inductors, as are present in other hyperchaotic circuits, and it has not been previously reported.

[1]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[2]  E. Tlelo-Cuautle,et al.  Behavioral Modeling of SNFS for Synthesizing Multi-Scroll Chaotic Attractors , 2013 .

[3]  Carlos Sánchez-López,et al.  Behavioral modeling for synthesizing n-scroll attractors , 2014, IEICE Electron. Express.

[4]  Ahmed S. Elwakil,et al.  Creation of a complex butterfly attractor using a novel Lorenz-Type system , 2002 .

[5]  Colin E. Gough,et al.  High-temperature superconductivity , 1996 .

[6]  Julien Clinton Sprott,et al.  Chaotic flows with a single nonquadratic term , 2014 .

[7]  Xinghuo Yu,et al.  Design and Implementation of Grid Multiwing Butterfly Chaotic Attractors From a Piecewise Lorenz System , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Nikolay V. Kuznetsov,et al.  Hidden Attractor in Chua's Circuits , 2011, ICINCO.

[9]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[10]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[11]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in nonlinear control systems , 2011 .

[12]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[13]  Yu Si-Min,et al.  Generation and synchronization of N-scroll chaotic and hyperchaotic attractors in fourth-order systems , 2004 .

[14]  Giuseppe Grassi,et al.  Experimental realization of observer-based hyperchaos synchronization , 2001 .

[15]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[16]  Julien Clinton Sprott,et al.  Chaotic hyperjerk systems , 2006 .

[17]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[18]  Julien Clinton Sprott Autonomous Dissipative Systems , 2010 .

[19]  Julien Clinton Sprott,et al.  Amplitude control approach for chaotic signals , 2013 .

[20]  Roger F. Gans WHEN IS CUTTING CHAOTIC , 1995 .

[21]  Jun Wang,et al.  Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum , 2012 .

[22]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[23]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[24]  V. KuznetsovN. Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems ⋆ , 2012 .

[25]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[26]  Kehui Sun,et al.  Periodically Forced Chaotic System with Signum Nonlinearity , 2010, Int. J. Bifurc. Chaos.

[27]  Guanrong Chen,et al.  Generation of $n\times m$-Wing Lorenz-Like Attractors From a Modified Shimizu–Morioka Model , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[28]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[29]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[30]  Julien Clinton Sprott,et al.  Improved Correlation Dimension Calculation , 2000, Int. J. Bifurc. Chaos.

[31]  Guanrong Chen,et al.  On a new hyperchaotic system , 2008 .

[32]  Ruy Barboza Dynamics of a hyperchaotic Lorenz System , 2007, Int. J. Bifurc. Chaos.

[33]  Guanrong Chen,et al.  Controlling a unified chaotic system to hyperchaotic , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  O. Rössler An equation for hyperchaos , 1979 .

[35]  G. Leonov,et al.  Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems , 2012 .

[36]  T. Tsubone,et al.  Hyperchaos from a 4-D manifold piecewise-linear system , 1998 .

[37]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[38]  Guang Zeng,et al.  Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation , 2014, Int. J. Circuit Theory Appl..

[39]  Carlos Sánchez-López,et al.  Frequency behavior of saturated nonlinear function series based on opamps , 2013 .

[40]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.