A sequence-aware merger of genomic structural variations at population scale

[1]  Kai Wang,et al.  A survey of algorithms for the detection of genomic structural variants from long-read sequencing data , 2023, Nature Methods.

[2]  Nathan D. Olson,et al.  Variant calling and benchmarking in an era of complete human genome sequences , 2023, Nature Reviews Genetics.

[3]  Rachel M. Sherman,et al.  Jasmine and Iris: population-scale structural variant comparison and analysis , 2023, Nature Methods.

[4]  Lingling Chen,et al.  Graph-based pan-genome: increased opportunities in plant genomics. , 2022, Journal of experimental botany.

[5]  Luis F. Rivera,et al.  Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice , 2022, bioRxiv.

[6]  Peter A. Audano,et al.  Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes , 2022, Nature Genetics.

[7]  J. Grimwood,et al.  Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition , 2022, Nature Plants.

[8]  R. Gibbs,et al.  Truvari: refined structural variant comparison preserves allelic diversity , 2022, bioRxiv.

[9]  Peter A. Audano,et al.  SVision: a deep learning approach to resolve complex structural variants , 2022, Nature Methods.

[10]  Tao Jiang,et al.  Long-read sequencing settings for efficient structural variation detection based on comprehensive evaluation , 2021, BMC Bioinformatics.

[11]  Hongyu Zhang,et al.  Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations , 2021, Cell.

[12]  Huo Hongyin,et al.  Whole-Genome Diversification Analysis of the Hornbeam Species Reveals Speciation and Adaptation Among Closely Related Species , 2021, Frontiers in Plant Science.

[13]  J. Vermeesch,et al.  A benchmark of structural variation detection by long reads through a realistic simulated model , 2020, Genome Biology.

[14]  Martin Vingron,et al.  SVIM-asm: structural variant detection from haploid and diploid genome assemblies , 2020, bioRxiv.

[15]  Yadong Wang,et al.  Long-read-based human genomic structural variation detection with cuteSV , 2020, Genome Biology.

[16]  Ken Chen,et al.  A robust benchmark for detection of germline large deletions and insertions , 2020, Nature Biotechnology.

[17]  Rachel M. Sherman,et al.  Pan-genomics in the human genome era , 2020, Nature Reviews Genetics.

[18]  Glenn Hickey,et al.  Genotyping structural variants in pangenome graphs using the vg toolkit , 2019, Genome Biology.

[19]  Martin Vingron,et al.  SVIM: structural variant identification using mapped long reads , 2018, bioRxiv.

[20]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[21]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[22]  F. Balloux,et al.  Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast , 2016, Nature Communications.

[23]  Adam Gudys,et al.  FAMSA: Fast and accurate multiple sequence alignment of huge protein families , 2016, Scientific Reports.

[24]  Qinghua Hu,et al.  HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy , 2015, Bioinform..

[25]  Jan O. Korbel,et al.  Phenotypic impact of genomic structural variation: insights from and for human disease , 2013, Nature Reviews Genetics.

[26]  Tomas W. Fitzgerald,et al.  Copy number variation and evolution in humans and chimpanzees. , 2008, Genome research.

[27]  Stijn van Dongen,et al.  Graph Clustering Via a Discrete Uncoupling Process , 2008, SIAM J. Matrix Anal. Appl..

[28]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[29]  OUP accepted manuscript , 2022, Molecular Biology And Evolution.