Pareto-based multi-objective optimization for classification in data mining

This paper explores the possibility of classification based on Pareto multi-objective optimization. The efforts on solving optimization problems using the Pareto-based MOO methodology have gained increasing impetus on comparison of selected constraints. Moreover we have different types of classification problem based on optimization model like single objective optimization, MOO, Pareto optimization and convex optimization. All above techniques fail to generate distinguished class/subclass from existing class based on sensitive data. However, in this regard Pareto-based MOO approach is more powerful and effective in addressing various data mining tasks such as clustering, feature selection, classification, and knowledge extraction. The primary contribution of this paper is to solve such noble classification problem. Our work provides an overview of the existing research on MOO and contribution of Pareto based MOO focusing on classification. Particularly, the entire work deals with association of sub-features for noble classification. Moreover potentially interesting sub-features in MOO for classification are used to strengthen the concept of Pareto based MOO. Experiment has been carried out to validate the theory with different real world data sets which are more sensitive in nature. Finally, experimental results provide effectiveness of the proposed method using sensitive data.

[1]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[2]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[3]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[4]  Bernhard Sendhoff,et al.  Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[5]  Evan J. Hughes,et al.  Many-objective directed evolutionary line search , 2011, GECCO '11.

[6]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[7]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[8]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[11]  Yimin Liu,et al.  Integrating Multi-Objective Genetic Algorithm and Validity Analysis for Locating and Ranking Alternative Clustering , 2005, Informatica.

[12]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[13]  Mario Köppen,et al.  Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-objective Optimization , 2005, EMO.

[14]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[15]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[16]  Mehrdad Tamiz,et al.  New Developments in Multiple Objective and Goal Programming - ReadingSample , 2017 .

[17]  Amos H. C. Ng,et al.  Integration of data mining and multi-objective optimisation for decision support in production systems development , 2014, Int. J. Comput. Integr. Manuf..

[18]  Joshua D. Knowles,et al.  Feature subset selection in unsupervised learning via multiobjective optimization , 2006 .

[19]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[20]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[21]  Filippo Menczer,et al.  Evolutionary model selection in unsupervised learning , 2002, Intell. Data Anal..

[22]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[23]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization , 2008, 2008 3rd International Workshop on Genetic and Evolving Systems.

[24]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[25]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  Hui Li,et al.  An Improved Version of Volume Dominance for Multi-Objective Optimisation , 2009, EMO.

[28]  Hemanta Kumar Bhuyan,et al.  Privacy preserving sub-feature selection based on fuzzy probabilities , 2014, Cluster Computing.

[29]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[30]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[31]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[32]  Anil K. Jain,et al.  Clustering ensembles: models of consensus and weak partitions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Carla E. Brodley,et al.  Feature Selection for Unsupervised Learning , 2004, J. Mach. Learn. Res..

[34]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[35]  M. Koppen,et al.  A fuzzy scheme for the ranking of multivariate data and its application , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[36]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[37]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[38]  Carlos A. Coello Coello,et al.  On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem , 2011, IEEE Transactions on Evolutionary Computation.

[39]  Xin Yao,et al.  How well do multi-objective evolutionary algorithms scale to large problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[40]  Carlos A. Coello Coello,et al.  Objective reduction using a feature selection technique , 2008, GECCO '08.

[41]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[42]  Joshua D. Knowles,et al.  Semi-supervised feature selection via multiobjective optimization , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[43]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[44]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[45]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[46]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[47]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[48]  Eckart Zitzler,et al.  Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods , 2007, 2007 IEEE Congress on Evolutionary Computation.

[49]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[50]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[51]  Flávio Bortolozzi,et al.  Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[52]  Eckart Zitzler,et al.  A Hypervolume-Based Optimizer for High-Dimensional Objective Spaces , 2010 .

[53]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[54]  Amir Mosavi,et al.  Application of data mining in multiobjective optimization problems , 2014 .

[55]  Ian Witten,et al.  Data Mining , 2000 .

[56]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[57]  A. Ferligoj,et al.  Direct multicriteria clustering algorithms , 1992 .