The distribution of elements in automatic double sequences
暂无分享,去创建一个
[1] H. Furstenberg,et al. Products of Random Matrices , 1960 .
[2] Blair K. Spearman,et al. Pascal's Triangle (mod 8) , 1998, Eur. J. Comb..
[3] Jean-Paul Allouche,et al. Triangle de Pascal, complexité et automates , 1997 .
[4] Yuval Peres,et al. Intersecting random translates of invariant Cantor sets , 1991 .
[5] Y. Moshe. The density of 0's in recurrence double sequences , 2003 .
[6] Jeffrey Shallit,et al. Automatic Sequences: Theory, Applications, Generalizations , 2003 .
[7] P. Bougerol,et al. Products of Random Matrices with Applications to Schrödinger Operators , 1985 .
[8] John L. Goldwasser,et al. The density of ones in Pascal's rhombus , 1999, Discret. Math..
[9] N. J. Fine,et al. Binomial Coefficients Modulo a Prime , 1947 .
[10] A. H. Stein. Binomial coefficients not divisible by a prime , 1989 .
[11] On some arithmetical properties of middle binomial coefficients , 1998 .
[12] Distribution des coefficients multinomiaux et q-binomiaux modulo p , 1996 .
[13] Pascal's triangle (mod 9) , 1997 .
[14] R. Lima,et al. Exact Lyapunov exponent for infinite products of random matrices , 1994, chao-dyn/9407013.
[15] Heinz-Otto Peitgen,et al. Automaticity of Double Sequences Generated by One-Dimensional Linear Cellular Automata , 1997, Theor. Comput. Sci..