On Efficient Numerical Solution of Linear Algebraic Systems Arising in Goal-Oriented Error Estimates
暂无分享,去创建一个
[1] Thomas Richter,et al. Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..
[2] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[3] M. Arioli,et al. A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.
[4] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[5] Pierre Gosselet,et al. A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods , 2014 .
[6] Ralf Hartmann,et al. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .
[7] Sergey Korotov,et al. A posteriori error estimation of goal-oriented quantities for elliptic type BVPs , 2006, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).
[8] Rodolfo Bermejo,et al. Anisotropic "Goal-Oriented" Mesh Adaptivity for Elliptic Problems , 2013, SIAM J. Sci. Comput..
[9] Michael Woopen,et al. Adjoint-based hp-adaptivity on anisotropic meshes for high-order compressible flow simulations , 2016 .
[10] Vít Dolejší,et al. Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow , 2015 .
[11] M. Picasso. A stopping criterion for the conjugate gradient algorithm in the framework of anisotropic adaptive finite elements , 2009 .
[12] Ricardo H. Nochetto,et al. A safeguarded dual weighted residual method , 2008 .
[13] M. Arioli,et al. Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems , 2013 .
[14] J. Brandts,et al. [Review of: W. Bangerth, R. Rannacher (2003) Adaptive finite element methods for solving differential equations.] , 2005 .
[15] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[16] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[17] Georg May,et al. A Goal-Oriented High-Order Anisotropic Mesh Adaptation Using Discontinuous Galerkin Method for Linear Convection-Diffusion-Reaction Problems , 2019, SIAM J. Sci. Comput..
[18] Rolf Rannacher,et al. Goal-oriented error control of the iterative solution of finite element equations , 2009, J. Num. Math..
[19] Vít Dolejsí,et al. Efficient solution strategy for the semi-implicit discontinuous Galerkin discretization of the Navier-Stokes equations , 2011, J. Comput. Phys..
[20] Dmitri Kuzmin,et al. Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems , 2010, J. Comput. Appl. Math..
[21] Vít Dolejší,et al. Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems , 2017 .
[22] Martin Vohralík,et al. A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..
[23] L. Formaggia,et al. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .
[24] D. Darmofal,et al. Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .
[25] Pierre Gosselet,et al. Strict bounding of quantities of interest in computations based on domain decomposition , 2015, ArXiv.
[26] Paul Houston,et al. Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity , 2009 .
[27] Leszek Demkowicz,et al. Goal-oriented hp-adaptivity for elliptic problems , 2004 .
[28] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[29] Ralf Hartmann,et al. Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..
[30] Frédéric Alauzet,et al. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..
[31] Georg May,et al. A goal-oriented anisotropic hp-mesh adaptation method for linear convection-diffusion-reaction problems , 2019, Comput. Math. Appl..
[32] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[33] Zdenek Strakos,et al. On Efficient Numerical Approximation of the Bilinear Form c*A-1b , 2011, SIAM J. Sci. Comput..
[34] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[35] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[36] Dmitri Kuzmin,et al. Goal-oriented a posteriori error estimates for transport problems , 2010, Math. Comput. Simul..
[37] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[38] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[39] Thomas Richter,et al. A posteriori error estimation and anisotropy detection with the dual‐weighted residual method , 2010 .
[40] Mark Ainsworth,et al. Guaranteed computable bounds on quantities of interest in finite element computations , 2012 .
[41] Martin Vohralík,et al. Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers , 2020, J. Comput. Appl. Math..