A large source of low-volatility secondary organic aerosol

[1]  D. Worsnop,et al.  Special Issue on Aerosol Measurements in the 1 nm Range , 2011 .

[2]  J. Peeters,et al.  Unusually fast 1,6-h shifts of enolic hydrogens in peroxy radicals: formation of the first-generation C2 and C3 carbonyls in the oxidation of isoprene. , 2012, The journal of physical chemistry. A.

[3]  Renyi Zhang,et al.  Atmospheric nanoparticles formed from heterogeneous reactions of organics , 2010 .

[4]  Allen L. Robinson,et al.  Is the gas‐particle partitioning in alpha‐pinene secondary organic aerosol reversible? , 2007 .

[5]  T. Petäjä,et al.  A new atmospherically relevant oxidant of sulphur dioxide , 2012, Nature.

[6]  Ulrich Pöschl,et al.  An amorphous solid state of biogenic secondary organic aerosol particles , 2010, Nature.

[7]  Herbert J. Tobias,et al.  Kinetics of the Gas-Phase Reactions of Alcohols, Aldehydes, Carboxylic Acids, and Water with the C13 Stabilized Criegee Intermediate Formed from Ozonolysis of 1-Tetradecene , 2001 .

[8]  D. Tanner,et al.  Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere , 1993 .

[9]  G. Marston,et al.  The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. , 2008, Chemical Society reviews.

[10]  John H. Seinfeld,et al.  Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation , 2013, Proceedings of the National Academy of Sciences.

[11]  P. Ziemann,et al.  Evidence for Low-Volatility Diacyl Peroxides as a Nucleating Agent and Major Component of Aerosol Formed from Reactions of O3 with Cyclohexene and Homologous Compounds , 2002 .

[12]  M. Bowers,et al.  Ion-polar molecule collisions. Effect of molecular size on ion-polar molecule rate constants , 1973 .

[13]  I. Hermans,et al.  Computational study of the stability of α-hydroperoxyl-or α-alkylperoxyl substituted alkyl radicals , 2004 .

[14]  J. Thornton,et al.  A field-deployable, chemical ionization time-of-flight mass spectrometer , 2011 .

[15]  J. Pankow Gas/particle partitioning of neutral and ionizing compounds to single and multi-phase aerosol particles. 1. Unified modeling framework , 2003 .

[16]  H. Kjaergaard,et al.  Atmospheric fate of methacrolein. 1. Peroxy radical isomerization following addition of OH and O2. , 2012, The journal of physical chemistry. A.

[17]  J. Peeters,et al.  A structure-activity relationship for the rate coefficient of H-migration in substituted alkoxy radicals. , 2010, Physical chemistry chemical physics : PCCP.

[18]  B. Huebert,et al.  Observations of H2SO4 and MSA during PEM-Tropics-A , 1999 .

[19]  Kenneth A. Smith,et al.  Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles , 2000 .

[20]  R. Lesclaux,et al.  Theoretical study on the atmospheric fate of carbonyl radicals: kinetics of decomposition reactions , 2001 .

[21]  K. Lehtinen,et al.  Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed , 2010 .

[22]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[23]  K. Lehtinen,et al.  The role of low volatile organics on secondary organic aerosol formation , 2013 .

[24]  S. Martin,et al.  Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene , 2007 .

[25]  U. Baltensperger,et al.  Identification of Polymers as Major Components of Atmospheric Organic Aerosols , 2004, Science.

[26]  William H Green,et al.  Intramolecular hydrogen migration in alkylperoxy and hydroperoxyalkylperoxy radicals: accurate treatment of hindered rotors. , 2010, The journal of physical chemistry. A.

[27]  D. Worsnop,et al.  Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer , 2009 .

[28]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[29]  T. Petäjä,et al.  An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions , 2011 .

[30]  M. Kulmala,et al.  Rapid Formation of Sulfuric Acid Particles at Near-Atmospheric Conditions , 2005, Science.

[31]  Katrin Fuhrer,et al.  Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. , 2006, Analytical chemistry.

[32]  J. Peeters,et al.  HOx radical regeneration in the oxidation of isoprene. , 2009, Physical chemistry chemical physics : PCCP.

[33]  A. Matsunaga,et al.  Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements , 2010 .

[34]  Luc Vereecken,et al.  Theoretical studies of atmospheric reaction mechanisms in the troposphere. , 2012, Chemical Society reviews.

[35]  J. F. Müller,et al.  Low-volatility poly-oxygenates in the OH-initiated atmospheric oxidation of alpha-pinene: impact of non-traditional peroxyl radical chemistry. , 2007, Physical chemistry chemical physics : PCCP.

[36]  G. Mann,et al.  Aerosol mass spectrometer constraint on the global secondary organic aerosol budget , 2011 .

[37]  J. Smith,et al.  Dependence of particle nucleation and growth on high molecular weight gas phase products during ozonolysis of α-pinene , 2013 .

[38]  G. da Silva,et al.  Unimolecular beta-hydroxyperoxy radical decomposition with OH recycling in the photochemical oxidation of isoprene. , 2010, Environmental science & technology.

[39]  J. Müller,et al.  A group contribution method for estimating the vapour pressures of α-pinene oxidation products , 2005 .

[40]  A. Zelenyuk,et al.  Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol , 2011, Proceedings of the National Academy of Sciences.

[41]  T. Dibble,et al.  Computational Studies of Intramolecular Hydrogen Atom Transfers in the β-Hydroxyethylperoxy and β-Hydroxyethoxy Radicals , 2007 .

[42]  I. Riipinen,et al.  Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations , 2011 .

[43]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[44]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[45]  C. Stanier,et al.  Ozonolysis of α‐pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields) , 2007 .

[46]  T. Petäjä,et al.  Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range , 2013 .

[47]  A. Viggiano,et al.  Rate Constants for the Reactions of XO3-(H2O)n (X = C, HC, and N) and NO3-(HNO3)n with H2SO4: Implications for Atmospheric Detection of H2SO4 , 1997 .

[48]  T. Petäjä,et al.  The Role of Sulfuric Acid in Atmospheric Nucleation , 2010, Science.

[49]  Eero Nikinmaa,et al.  Station for Measuring Ecosystem-Atmosphere Relations: SMEAR , 2013 .

[50]  T. Petäjä,et al.  Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF , 2011 .

[51]  R. Koppmann,et al.  Diffusion technique for the production of gas standards for atmospheric measurements , 1999 .

[52]  Erik Swietlicki,et al.  Warming-induced increase in aerosol number concentration likely to moderate climate change , 2013 .

[53]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[54]  S. Pandis,et al.  High formation of secondary organic aerosol from the photo-oxidation of toluene , 2009 .

[55]  T. Petäjä,et al.  Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air , 2012 .

[56]  A. Arneth,et al.  The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections , 2008 .

[57]  M. Johnston,et al.  The Thermal-Stability of Oligomers in Alpha-Pinene Secondary Organic Aerosol , 2011 .

[58]  J. Thornton,et al.  A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species , 2012 .

[59]  Andreas Wahner,et al.  Photochemical production of aerosols from real plant emissions , 2009 .

[60]  J. Staehelin,et al.  Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes , 2012 .

[61]  J. Thornton,et al.  Particulate Organic Matter Detection Using a Micro-Orifice Volatilization Impactor Coupled to a Chemical Ionization Mass Spectrometer (MOVI-CIMS) , 2010 .

[62]  U. Rohner,et al.  A high-resolution mass spectrometer to measure atmospheric ion composition , 2010 .

[63]  A. Robinson,et al.  A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution , 2011 .

[64]  R. Derwent,et al.  Atmospheric Chemistry and Physics Protocol for the Development of the Master Chemical Mechanism, Mcm V3 (part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds , 2022 .

[65]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[66]  R. A. Cox,et al.  Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry , 1997 .

[67]  J. Seinfeld,et al.  Peroxy radical chemistry and OH radical production during the NO 3 -initiated oxidation of isoprene , 2012 .

[68]  A. Hansel,et al.  On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research , 1998 .

[69]  R. Kamens,et al.  Heterogeneous Atmospheric Aerosol Production by Acid-Catalyzed Particle-Phase Reactions , 2002, Science.

[70]  T. Petäjä,et al.  Particle Size Magnifier for Nano-CN Detection , 2011 .

[71]  H. Kjaergaard,et al.  Electronic Supporting Information ( ESI ) Peroxy radical isomerization in the oxidation of isoprene , 2011 .

[72]  K. Carslaw,et al.  Boreal forests, aerosols and the impacts on clouds and climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  J. Lamarque,et al.  Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[74]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[75]  H. Kjaergaard,et al.  Autoxidation of Organic Compounds in the Atmosphere , 2013 .