Solar photocatalytic disinfection of water using titanium dioxide graphene composites

[1]  Xizhang Wang,et al.  A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction , 2013 .

[2]  Pengyu Dong,et al.  High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation , 2013 .

[3]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[4]  I. Oller,et al.  Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study , 2012 .

[5]  J. Tascón,et al.  UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation , 2012 .

[6]  Shouheng Sun,et al.  FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. , 2012, Journal of the American Chemical Society.

[7]  J. Byrne,et al.  Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor. , 2011, Journal of hazardous materials.

[8]  Xiaoqiang An,et al.  Graphene-based photocatalytic composites , 2011 .

[9]  J. Hamilton,et al.  Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies , 2011, 1108.5911.

[10]  Jincheng Liu,et al.  Gram-scale production of graphene oxide–TiO2 nanorod composites: Towards high-activity photocatalytic materials , 2011 .

[11]  Yanhuai Ding,et al.  A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation , 2011, Nanotechnology.

[12]  L. Zou,et al.  Synthesis of TiO_2–graphene composites via visible-light photocatalytic reduction of graphene oxide , 2011 .

[13]  Sean C. Smith,et al.  Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite , 2011 .

[14]  J. Hamilton,et al.  Photocatalytic Enhancement for Solar Disinfection of Water: A Review , 2011 .

[15]  R. Ruoff,et al.  Reduced graphene oxide by chemical graphitization. , 2010, Nature communications.

[16]  I. Oller,et al.  Resistance of Fusarium sp spores to solar TiO2 photocatalysis: influence of spore type and water (scaling‐up results) , 2010 .

[17]  Prashant V Kamat,et al.  Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. , 2010, Nano letters.

[18]  Omid Akhavan,et al.  Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation , 2009 .

[19]  Bernadette A. Hernandez-Sanchez,et al.  Synthesis and Characterization of Titania-Graphene Nanocomposites. , 2009 .

[20]  Julián Blanco,et al.  Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends , 2009 .

[21]  C. Sichel,et al.  Photocatalytic disinfection of natural well water contaminated by Fusarium solani using TiO2 slurry in solar CPC photo-reactors , 2009 .

[22]  L. Forró,et al.  Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light , 2009 .

[23]  Mark R Wiesner,et al.  Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. , 2009, Environmental science & technology.

[24]  J. Byrne,et al.  Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. , 2009, Water research.

[25]  J. Hamilton,et al.  Electrochemical Investigation of Doped Titanium Dioxide , 2008 .

[26]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[27]  J. Blanco,et al.  Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species , 2007 .

[28]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[29]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[30]  Kristian Fog Nielsen,et al.  Mycotoxin production by indoor molds. , 2003 .

[31]  R. Facius,et al.  Systematic Study of Parameters Influencing the Action of Rose Bengal with Visible Light on Bacterial Cells: Comparison Between the Biological Effect and Singlet-Oxygen Production , 2000 .

[32]  I. Heiser,et al.  The formation of reactive oxygen species by fungal and bacterial phytotoxins , 1998 .