A biased random key genetic algorithm for 2D and 3D bin packing problems

In this paper we present a novel biased random-key genetic algorithm (BRKGA) for 2D and 3D bin packing problems. The approach uses a maximal-space representation to manage the free spaces in the bins. The proposed algorithm hybridizes a novel placement procedure with a genetic algorithm based on random keys. The BRKGA is used to evolve the order in which the boxes are packed into the bins and the parameters used by the placement procedure. Two new placement heuristics are used to determine the bin and the free maximal space where each box is placed. A novel fitness function that improves significantly the solution quality is also developed. The new approach is extensively tested on 858 problem instances and compared with other approaches published in the literature. The computational experiment results demonstrate that the new approach consistently equals or outperforms the other approaches and the statistical analysis confirms that the approach is significantly better than all the other approaches.

[1]  Daniele Vigo,et al.  Erratum to "The Three-Dimensional Bin Packing Problem": Robot-Packable and Orthogonal Variants of Packing Problems , 2005, Oper. Res..

[2]  Mauricio G. C. Resende,et al.  An evolutionary algorithm for manufacturing cell formation , 2004, Comput. Ind. Eng..

[3]  Sándor P. Fekete,et al.  A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing , 2003, Math. Oper. Res..

[4]  Hongfei Teng,et al.  An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles , 1999, Eur. J. Oper. Res..

[5]  Kyungsik Lee,et al.  Modeling and solving the spatial block scheduling problem in a shipbuilding company , 1996 .

[6]  José Fernando Gonçalves,et al.  A Hybrid Genetic Algorithm for Assembly Line Balancing , 2002, J. Heuristics.

[7]  Sándor P. Fekete,et al.  An Exact Algorithm for Higher-Dimensional Orthogonal Packing , 2006, Oper. Res..

[8]  David Pisinger,et al.  Guided Local Search for the Three-Dimensional Bin-Packing Problem , 2003, INFORMS J. Comput..

[9]  Sándor P. Fekete,et al.  A New Exact Algorithm for General Orthogonal D-Dimensional Knapsack Problems , 1997, ESA.

[10]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[11]  Gu Qingming,et al.  A HYBRID GENETIC ALGORITHM FOR JOB SHOP SCHEDULING PROBLEM , 1998 .

[12]  S. Martello,et al.  Exact Solution of the Two-Dimensional Finite Bon Packing Problem , 1998 .

[13]  Ramón Alvarez-Valdés,et al.  A hybrid GRASP/VND algorithm for two- and three-dimensional bin packing , 2010, Ann. Oper. Res..

[14]  Daniele Vigo,et al.  Heuristic algorithms for the three-dimensional bin packing problem , 2002, Eur. J. Oper. Res..

[15]  Mauricio G. C. Resende,et al.  A parallel multi-population biased random-key genetic algorithm for a container loading problem , 2012, Comput. Oper. Res..

[16]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[17]  Mauricio G. C. Resende,et al.  A genetic algorithm for the resource constrained multi-project scheduling problem , 2008, Eur. J. Oper. Res..

[18]  Daniel Mack,et al.  A heuristic for solving large bin packing problems in two and three dimensions , 2012, Central Eur. J. Oper. Res..

[19]  Marco A. Boschetti,et al.  The Two-Dimensional Finite Bin Packing Problem. Part II: New lower and upper bounds , 2003, 4OR.

[20]  Bengt-Erik Bengtsson,et al.  Packing Rectangular Pieces - A Heuristic Approach , 1982, Comput. J..

[21]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[22]  Marco A. Boschetti New lower bounds for the three-dimensional finite bin packing problem , 2004, Discret. Appl. Math..

[23]  Marco A. Boschetti,et al.  The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case , 2003, 4OR.

[24]  John E. Beasley,et al.  Algorithms for Unconstrained Two-Dimensional Guillotine Cutting , 1985 .

[25]  Daniele Vigo,et al.  The Three-Dimensional Bin Packing Problem , 2000, Oper. Res..

[26]  Teodor Gabriel Crainic,et al.  TS2PACK: A two-level tabu search for the three-dimensional bin packing problem , 2009, Eur. J. Oper. Res..

[27]  Daniele Vigo,et al.  TSpack: A Unified Tabu Search Code for Multi-Dimensional Bin Packing Problems , 2004, Ann. Oper. Res..

[28]  Daniele Vigo,et al.  Algorithm 864: General and robot-packable variants of the three-dimensional bin packing problem , 2007, TOMS.

[29]  Sönke Hartmann,et al.  Packing problems and project scheduling models: an integrating perspective , 2000, J. Oper. Res. Soc..

[30]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[31]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[32]  José Fernando Gonçalves,et al.  A genetic algorithm for lot sizing and scheduling under capacity constraints and allowing backorders , 2011 .

[33]  Paolo Toth,et al.  A Set-Covering-Based Heuristic Approach for Bin-Packing Problems , 2006, INFORMS J. Comput..

[34]  Guido Perboli,et al.  TS 2 PACK : A Two-Level Tabu Search for the Three-dimensional Bin Packing Problem , 2015 .

[35]  J. O. Berkey,et al.  Two-Dimensional Finite Bin-Packing Algorithms , 1987 .

[36]  John E. Beasley,et al.  An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure , 1985, Oper. Res..

[37]  K. Lai,et al.  Developing a simulated annealing algorithm for the cutting stock problem , 1997 .

[38]  Daniele Vigo,et al.  Approximation algorithms for the oriented two-dimensional bin packing problem , 1999, Eur. J. Oper. Res..

[39]  Mauricio G. C. Resende,et al.  A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem , 2011, J. Heuristics.

[40]  Nicos Christofides,et al.  An Algorithm for Two-Dimensional Cutting Problems , 1977, Oper. Res..