Perfect Space–Time Block Codes
暂无分享,去创建一个
Frédérique E. Oggier | Emanuele Viterbo | Jean-Claude Belfiore | Ghaya Rekaya-Ben Othman | F. Oggier | J. Belfiore | E. Viterbo | G. R. Othman
[1] Alexander Schiemann,et al. Classification of Hermitian Forms with the Neighbour Method , 1998, J. Symb. Comput..
[2] Hesham El Gamal,et al. A new approach to layered space-Time coding and signal processing , 2001, IEEE Trans. Inf. Theory.
[3] S. Lang. Algebraic Number Theory , 1971 .
[4] P. Vijay Kumar,et al. Explicit Space–Time Codes Achieving the Diversity–Multiplexing Gain Tradeoff , 2006, IEEE Transactions on Information Theory.
[5] Mohamed Oussama Damen,et al. Universal space-time coding , 2003, IEEE Trans. Inf. Theory.
[6] Emanuele Viterbo,et al. A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.
[7] J. Neukirch. Algebraic Number Theory , 1999 .
[8] Harvey Cohn,et al. Advanced Number Theory , 1980 .
[9] Babak Hassibi,et al. On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.
[10] Frédérique E. Oggier,et al. Algebraic lattice constellations: bounds on performance , 2006, IEEE Transactions on Information Theory.
[11] Huguette Napias,et al. A generalization of the LLL-algorithm over euclidean rings or orders , 1996 .
[12] Frédérique E. Oggier,et al. New algebraic constructions of rotated cubic lattice constellations for the Rayleigh fading channel , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).
[13] Emanuele Viterbo,et al. The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[14] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[15] Frédérique E. Oggier,et al. Algebraic Number Theory and Code Design for Rayleigh Fading Channels , 2004, Found. Trends Commun. Inf. Theory.
[16] Mohamed Oussama Damen,et al. Lattice code decoder for space-time codes , 2000, IEEE Communications Letters.
[17] Frédérique E. Oggier,et al. New algebraic constructions of rotated Z/sup n/-lattice constellations for the Rayleigh fading channel , 2004, IEEE Transactions on Information Theory.
[18] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[19] Lizhong Zheng,et al. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.
[20] A. Blokhuis. SPHERE PACKINGS, LATTICES AND GROUPS (Grundlehren der mathematischen Wissenschaften 290) , 1989 .
[21] B. Sundar Rajan,et al. Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.
[22] Sandra Galliou,et al. A new family of full rate, fully diverse space-time codes based on Galois theory , 2002, Proceedings IEEE International Symposium on Information Theory,.
[23] DRAFT. April , 2004 .
[24] Pranav Dayal,et al. An optimal two transmit antenna space-time code and its stacked extensions , 2005, IEEE Transactions on Information Theory.
[25] P. Dayal,et al. An optimal two transmit antenna space-time code and its stacked extensions , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.
[26] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[27] Jean-Claude Belfiore,et al. On the complexity of ml lattice decoders for decoding linear full rate space-time codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[28] M. Carral,et al. Quadratic and λ-hermitian forms , 1989 .
[29] Jean-Claude Belfiore,et al. Quaternionic lattices for space-time coding , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).
[30] Emanuele Viterbo,et al. The golden code: a 2×2 full-rate space-time code with nonvanishing determinants , 2004, IEEE Trans. Inf. Theory.
[31] P. Vijay Kumar,et al. Explicit, Minimum-Delay Space-Time Codes Achieving The Diversity-Multiplexing Gain Tradeo , 2004 .
[32] H. P. F. Swinnerton-Dyer. A brief guide to algebraic number theory , 2001 .
[33] G. David Forney,et al. Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..
[34] Fernando Q. Gouvêa,et al. P-Adic Numbers: An Introduction , 1993 .
[35] A. Robert Calderbank,et al. Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.
[36] Mohamed Oussama Damen,et al. A construction of a space-time code based on number theory , 2002, IEEE Trans. Inf. Theory.
[37] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[38] Babak Hassibi,et al. High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.