Two-Stage Multi-Scale Mass Segmentation From Full Mammograms

Manually segmenting masses from native mammograms is a very time-consuming and error-prone task. Therefore, an integrated computer-aided diagnosis (CAD) system is required to assist radiologists for automatic and precise breast mass delineation. In this work, we present a two-stage multi-scale pipeline that provides accurate mass delineations from high-resolution full mammograms. First, we propose an extended deep detector integrating a multi-scale fusion strategy for automated mass localization. Second, a convolutional encoder-decoder network using nested and dense skip connections is used to fine-delineate candidate masses. Experiments on public DDSM-CBIS and INbreast datasets reveals strong robustness against the diversity of size, shape and appearance of masses, with an average Dice of 80.44% on INbreast. This shows promising accuracy as an automated full-image mass segmentation system, towards better interaction-free CAD.

[1]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[3]  Daniel L Rubin,et al.  A curated mammography data set for use in computer-aided detection and diagnosis research , 2017, Scientific Data.

[4]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.