LinkEdit: interactive linkage editing using symbolic kinematics

We present a method for interactive editing of planar linkages. Given a working linkage as input, the user can make targeted edits to the shape or motion of selected parts while preserving other, e.g., functionally-important aspects. In order to make this process intuitive and efficient, we provide a number of editing tools at different levels of abstraction. For instance, the user can directly change the structure of a linkage by displacing joints, edit the motion of selected points on the linkage, or impose limits on the size of its enclosure. Our method safeguards against degenerate configurations during these edits, thus ensuring the correct functioning of the mechanism at all times. Linkage editing poses strict requirements on performance that standard approaches fail to provide. In order to enable interactive and robust editing, we build on a symbolic kinematics approach that uses closed-form expressions instead of numerical methods to compute the motion of a linkage and its derivatives. We demonstrate our system on a diverse set of examples, illustrating the potential to adapt and personalize the structure and motion of existing linkages. To validate the feasibility of our edited designs, we fabricated two physical prototypes.

[1]  Wilmot Li,et al.  Creating works-like prototypes of mechanical objects , 2014, ACM Trans. Graph..

[2]  Wilmot Li,et al.  Illustrating how mechanical assemblies work , 2010, SIGGRAPH 2010.

[3]  O. Bauchau,et al.  Review of Classical Approaches for Constraint Enforcement in Multibody Systems , 2008 .

[4]  F. Pellacini,et al.  Fabricating spatially-varying subsurface scattering , 2010, SIGGRAPH 2010.

[5]  Sylvain Lefebvre,et al.  Bridging the gap , 2014, ACM Trans. Graph..

[6]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[7]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[8]  Wojciech Matusik,et al.  Physical reproduction of materials with specified subsurface scattering , 2010, ACM Trans. Graph..

[9]  Wilmot Li,et al.  Illustrating how mechanical assemblies work , 2010, CACM.

[10]  Baining Guo,et al.  Motion-guided mechanical toy modeling , 2012, ACM Trans. Graph..

[11]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[12]  L Burmester,et al.  Lehrbuch der Kinematik , 1888 .

[13]  Eitan Grinspun,et al.  ChaCra: an interactive design system for rapid character crafting , 2015, SCA '14.

[14]  Roger E. Kaufman,et al.  Interactive linkage synthesis on a small computer , 1971, ACM '71.

[15]  Takeo Igarashi,et al.  Guided exploration of physically valid shapes for furniture design , 2012, ACM Trans. Graph..

[16]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[17]  Wojciech Matusik,et al.  Design and fabrication of materials with desired deformation behavior , 2010, SIGGRAPH 2010.

[18]  Steve Marschner,et al.  Physical Face Cloning , 2022 .

[19]  A. Ghosal Design of Four-Link Mechanisms , 2012 .

[20]  Denis Zorin,et al.  Worst-case structural analysis , 2013, ACM Trans. Graph..

[21]  Daniel Cohen-Or,et al.  Build-to-last , 2014, ACM Trans. Graph..

[22]  John McPhee,et al.  Using Gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms , 2012 .

[23]  Hans-Peter Seidel,et al.  An algebraic model for parameterized shape editing , 2012, ACM Trans. Graph..

[24]  Takeo Igarashi,et al.  Converting 3D furniture models to fabricatable parts and connectors , 2011, ACM Trans. Graph..

[25]  Ronald N. Perry,et al.  Kizamu: a system for sculpting digital characters , 2001, SIGGRAPH.

[26]  Manfred Hiller,et al.  Symbolic Processing of Multiloop Mechanism Dynamics Using Closed-Form Kinematics Solutions , 1997 .

[27]  Baining Guo,et al.  Fabricating spatially-varying subsurface scattering , 2010, ACM Trans. Graph..

[28]  Olga Sorkine-Hornung,et al.  Spin-it , 2014, ACM Trans. Graph..

[29]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[30]  Markus H. Gross,et al.  Computational Design of Rubber Balloons , 2012, Comput. Graph. Forum.

[31]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[32]  Wilmot Li,et al.  Designing and fabricating mechanical automata from mocap sequences , 2013, ACM Trans. Graph..

[33]  C. Wampler,et al.  Computing the Branches, Singularity Trace, and Critical Points of Single Degree-of-Freedom, Closed-Loop Linkages , 2014 .

[34]  Hans-Peter Seidel,et al.  Pattern-aware shape deformation using sliding dockers , 2011, ACM Trans. Graph..

[35]  N. Mitra,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, SIGGRAPH 2009.

[36]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[37]  Wojciech Matusik,et al.  Design and fabrication by example , 2014, ACM Trans. Graph..

[38]  Tim Weyrich,et al.  Fabricating microgeometry for custom surface reflectance , 2009, ACM Trans. Graph..

[39]  Arthur G. Erdman,et al.  Mechanism Design : Analysis and Synthesis , 1984 .

[40]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.