Assessment of the methodology for establishing the EU list of critical raw materials : annexes

[1]  Nilay Shah,et al.  Contrasting perspectives on China's rare earths policies: Reframing the debate through a stakeholder lens , 2013 .

[2]  R. Scholz,et al.  Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus? , 2013 .

[3]  Vasili Nicoletopoulos,et al.  EUROPEAN POLICIES ON CRITICAL RAW MATERIALS, INCLUDING REE , 2014 .

[4]  Tzimas Evangelos,et al.  Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector: Assessing Rare Metalsas Supply-Chain Bottlenecks in Low-Carbon Energy Technologies , 2013 .

[5]  Martin Faulstich,et al.  Raw Material Criticality in the Context of Classical Risk Assessment , 2015 .

[6]  E. M. Harper,et al.  The criticality of four nuclear energy metals , 2015 .

[7]  E. Tzimas,et al.  The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies , 2013 .

[8]  Frances Wall Don't stop using rare earths , 2012 .

[9]  Peter Buchholz,et al.  Assessing the long-term supply risks for mineral raw materials—a combined evaluation of past and future trends , 2009 .

[10]  A. Elshkaki,et al.  An analysis of future platinum resources, emissions and waste streams using a system dynamic model of its intentional and non-intentional flows and stocks , 2013 .

[11]  Patrice Christmann,et al.  Facteurs de criticité et stratégies publiques française et européenne. Enjeux et réponses , 2012 .

[12]  Shinichirou Morimoto,et al.  Comparison of dysprosium security strategies in Japan for 2010–2030 , 2014 .

[13]  Klas Cullbrand,et al.  The Use of Potentially Critical Materials in Passenger Cars , 2012 .

[14]  Antonio Valero,et al.  Material flow analysis for Europe: An exergoecological approach , 2016 .

[15]  J. Kooroshy,et al.  Rare earth elements and strategic mineral policy , 2010 .

[16]  Nani Pajunen,et al.  Overcoming institutional barriers in the development of novel process industry residue based symbiosis products - Case study at the EU level , 2013 .

[17]  Benedikt Gleich,et al.  Measuring Criticality of Raw Materials: An Empirical Approach Assessing the Supply Risk Dimension of Commodity Criticality , 2015 .

[18]  Markus Berger,et al.  The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment , 2014, The International Journal of Life Cycle Assessment.

[19]  D. Lang,et al.  Understanding the modes of use and availability of critical metals – An expert-based scenario analysis for the case of indium , 2015 .

[20]  Gabrielle Gaustad,et al.  Identifying critical materials for photovoltaics in the US: A multi-metric approach , 2014 .

[21]  Cornel Mihai Nicolescu,et al.  System dynamics models for decision making in product multiple lifecycles , 2015 .

[22]  Prabhu Kandachar,et al.  Critical materials from a product design perspective , 2015 .

[23]  Katy Roelich,et al.  Metals in a Low-Carbon Economy: Resource Scarcity, Climate Change and Business in a Finite World , 2012 .

[24]  Peter D. Antill,et al.  Will future resource demand cause significant and unpredictable dislocations for the UK Ministry of Defence , 2015 .

[25]  Anna Stamp,et al.  Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches. , 2013, The Science of the total environment.

[26]  D. Dubois,et al.  Material flow analysis applied to rare earth elements in Europe , 2015 .

[27]  N. Boon,et al.  Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. , 2015, New biotechnology.

[28]  T. Zimmermann,et al.  HISTORIC AND FUTURE FLOWS OF CRITICAL MATERIALS RESULTING FROM DEPLOYMENT OF PHOTOVOLTAICS , 2013 .

[29]  A. M. Diederen,et al.  Scarcity of minerals. A strategic security issue , 2009 .

[30]  Laura Talens Peiró,et al.  Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply. , 2013, Environmental science & technology.

[31]  Pedro M. Saraiva,et al.  Evaluation of candidate biocides to control the biofouling Asian clam in the drinking water treatment industry: An environmentally friendly approach , 2014 .

[32]  T E Graedel,et al.  On the materials basis of modern society , 2013, Proceedings of the National Academy of Sciences.

[33]  O. Oenema,et al.  Phosphorus flows and balances of the European Union Member States. , 2016, The Science of the total environment.

[34]  J. Kynický,et al.  From "strategic" tungsten to "green" neodymium: a century of critical metals at a glance , 2015 .

[35]  Simon Warren,et al.  Methodology of metal criticality determination. , 2012, Environmental science & technology.

[36]  J. M. Sánchez,et al.  Effect of the Cr content on the sintering behaviour of TiCN–WC–Ni–Cr3C2 powder mixtures , 2014 .

[37]  Steven J. Duclos,et al.  DESIGN IN AN ERA OF CONSTRAINED RESOURCES , 2010 .

[38]  Michele L. Bustamante,et al.  Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics , 2014 .

[39]  T. Graedel,et al.  Criticality of non-fuel minerals: a review of major approaches and analyses. , 2011, Environmental science & technology.

[40]  M Simoni,et al.  Urban mining as a contribution to the resource strategy of the Canton of Zurich. , 2015, Waste management.

[41]  G. R. Ballantyne,et al.  Rare earths supply chains: current status, constraints and opportunities , 2014 .

[42]  Thomas F. Jaramillo,et al.  Addressing the Terawatt Challenge: Scalability in the Supply of Chemical Elements for Renewable Energy , 2012 .

[43]  Jo Dewulf,et al.  Toward an Overall Analytical Framework for the Integrated Sustainability Assessment of the Production and Supply of Raw Materials and Primary Energy Carriers , 2015 .

[44]  N. T. Nassar,et al.  Criticality of metals and metalloids , 2015, Proceedings of the National Academy of Sciences.

[45]  S. Massari,et al.  Rare earth elements as critical raw materials: Focus on international markets and future strategies , 2013 .

[46]  Massimo Peri,et al.  Clean Energy Industries and rare Earth Materials: Economic and Financial Issues , 2013 .

[47]  L. Mancini,et al.  Resource footprint of Europe: Complementarity of material flow analysis and life cycle assessment for policy support , 2015 .

[48]  S. Giljum,et al.  Materials embodied in international trade – Global material extraction and consumption between 1995 and 2005 , 2012 .

[49]  Henrik Wenzel,et al.  Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling , 2014 .

[50]  Kiyotaka Tahara,et al.  Criticality Assessment of Metals for Japan's Resource Strategy , 2015 .

[51]  Anna Stamp,et al.  Linking energy scenarios with metal demand modeling–The case of indium in CIGS solar cells , 2014 .

[52]  Eskinder Demisse Gemechu,et al.  From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment , 2015 .

[53]  T. Prior,et al.  Availability, addiction and alternatives: Three criteria for assessing the impact of peak minerals on society , 2011 .

[54]  Federica Cucchiella,et al.  Recycling of WEEEs: An economic assessment of present and future e-waste streams , 2015 .

[55]  R. Ayres,et al.  Material efficiency: rare and critical metals , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Junbeum Kim,et al.  Critical and precious materials consumption and requirement in wind energy system in the EU 27 , 2015 .

[57]  H. Wenzel,et al.  Reviewing resource criticality assessment from a dynamic and technology specific perspective: using the case of direct-drive wind turbines , 2016 .

[58]  T. E. Graedel,et al.  Criticality of the geological copper family. , 2012, Environmental science & technology.

[59]  Nedal T. Nassar,et al.  Limitations to elemental substitution as exemplified by the platinum-group metals , 2015 .

[60]  Tzimas Evangelos,et al.  Critical Metals in Strategic Energy Technologies - Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies , 2011 .

[61]  N. T. Nassar,et al.  Criticality of iron and its principal alloying elements. , 2014, Environmental science & technology.

[62]  Christoph Helbig,et al.  How to evaluate raw material supply risks—an overview , 2013 .

[63]  Lucia Mancini,et al.  Potential of life cycle assessment for supporting the management of critical raw materials , 2014, The International Journal of Life Cycle Assessment.

[64]  Stephan Barcikowski,et al.  An approach for transparent and electrically conducting coatings: A transparent plastic varnish with nanoparticulate magnetic additives , 2015 .

[65]  Bram Buijs,et al.  Limits to the critical raw materials approach , 2012 .

[66]  N. T. Nassar,et al.  The criticality of metals: a perspective for geologists , 2013 .

[67]  H. Rechberger,et al.  Considerations of resource availability in technology development strategies: The case study of photovoltaics , 2011 .

[68]  Thomas G. Goonan,et al.  Copper Recycling in the United States in 2004 , 2009 .

[69]  E. M. Harper,et al.  Criticality of the Geological Zinc, Tin, and Lead Family , 2015 .

[70]  Katy Roelich,et al.  Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity , 2014 .

[71]  K. Lammertsma,et al.  Scarcity of rare earth elements. , 2013, ChemSusChem.

[72]  J. Wübbeke Rare earth elements in China: Policies and narratives of reinventing an industry , 2013 .

[73]  Jacques Villeneuve,et al.  Assessing the national economic importance of metals: An Input–Output approach to the case of copper in France , 2015 .

[74]  Benedikt Gleich,et al.  An empirical approach to determine specific weights of driving factors for the price of commodities—A contribution to the measurement of the economic scarcity of minerals and metals , 2013 .

[75]  Steven A. Smith,et al.  Critical materials assessment program , 1984 .

[76]  Raimon Tolosana-Delgado,et al.  Assessing the supply potential of high-tech metals – A general method , 2015 .

[77]  Katy Roelich,et al.  Critical materials for infrastructure: local vs global properties , 2013 .

[78]  E. M. Harper,et al.  Criticality of Seven Specialty Metals , 2016 .

[79]  Jurgis Kazimieras Staniškis,et al.  Economic Importance, Environmental and Supply Risks on Imported Resources in Lithuanian Industry , 2012 .

[80]  A. Nagurney,et al.  When and for whom would e-waste be a treasure trove? Insights from a network equilibrium model of e-waste flows , 2014 .

[81]  V. Christensen,et al.  An ocean of surprises – Trends in human use, unexpected dynamics and governance challenges in areas beyond national jurisdiction , 2014 .

[82]  I D Williams,et al.  Distinct Urban Mines: Exploiting secondary resources in unique anthropogenic spaces. , 2015, Waste management.