Finite Digital Synchronous Circuits Are Characterized by 2-Algebraic Truth Tables

A digital function maps sequences of binary inputs, into sequences of binary outputs. It is causal when the output at cycle N is a boolean function of the input, from cycles 0 through N. A causal digital function f is characterized byit s truth table, an infinite sequence of bits (FN) which gathers all outputs for all inputs. It is identified to the power series ΣFNzN, with coefficients in the two elements field F2.

[1]  Jeffrey Shallit,et al.  On the Vector Space of the Automatic Reals , 1996, Theor. Comput. Sci..

[2]  Mark Shand,et al.  Programmable active memories: reconfigurable systems come of age , 1996, IEEE Trans. Very Large Scale Integr. Syst..

[3]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[4]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[5]  G. Rauzy,et al.  Suites algébriques, automates et substitutions , 1980 .

[6]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[7]  Jean Vuillemin,et al.  On Circuits and Numbers , 1994, IEEE Trans. Computers.

[8]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[9]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[10]  A. J. Poorten,et al.  Arithmetic properties of the solutions of a class of functional equations. , 1982 .

[11]  William J. Gilbert,et al.  Modern Algebra with Applications , 2002 .