Energy and traffic aware dynamic topology management for wireless cellular networks

In this paper, we study a dynamic topology management problem in the wireless cellular network, in which base stations can be switched on or off to save energy consumption of the network. To model non-uniform traffic demand over the network, we divide the entire network area into subareas, assuming that each of subareas has its own traffic demand, which can be satisfied by allocating enough bandwidth and power from a base station. With this network model, we propose a two-step algorithm for dynamic topology management. In the first step, we obtain the maximum radius of the service area for each base station by solving an optimization problem. In the second step, we first construct a graph based on the maximum radii obtained in the first step. We then identify the minimal set of base stations that should be switched on to satisfy the demand of each subarea in the network based on the shortest path algorithm on the constructed graph. From numerical results, we show that our algorithm provides a significant amount of energy saving, while adaptively considering the traffic demand of each subarea in the network.

[1]  Zhisheng Niu,et al.  Cell zooming for cost-efficient green cellular networks , 2010, IEEE Communications Magazine.

[2]  Zhang Chao,et al.  Green Mobile Access Network with Dynamic Base Station Energy Saving , 2009 .

[3]  Marco Ajmone Marsan,et al.  Energy-Aware UMTS Access Networks , 2008 .

[4]  Bhaskar Krishnamachari,et al.  Energy Savings through Dynamic Base Station Switching in Cellular Wireless Access Networks , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[5]  Liesbet Van der Perre,et al.  Challenges and enabling technologies for energy aware mobile radio networks , 2010, IEEE Communications Magazine.

[6]  Lukas Kencl,et al.  Energy savings for cellular network with evaluation of impact on data traffic performance , 2010, 2010 European Wireless Conference (EW).

[7]  L. Chiaraviglio,et al.  Optimal Energy Savings in Cellular Access Networks , 2009, 2009 IEEE International Conference on Communications Workshops.