Origin of reproducibility in the responses of retinal rods to single photons.

[1]  M. A. Erickson,et al.  The effect of recombinant recoverin on the photoresponse of truncated rod photoreceptors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  N. Engheta,et al.  Kinetics of Recovery of the Dark-adapted Salamander Rod Photoresponse , 1998, The Journal of general physiology.

[3]  Denis A. Baylor,et al.  Prolonged photoresponses in transgenic mouse rods lacking arrestin , 1997, Nature.

[4]  L. Lagnado,et al.  G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade , 1997, Nature.

[5]  D. Baylor,et al.  Molecular origin of continuous dark noise in rod photoreceptors. , 1996, Biophysical journal.

[6]  H. Khorana,et al.  Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. , 1996, Biochemistry.

[7]  W. G. Owen,et al.  Dynamic, spatially nonuniform calcium regulation in frog rods exposed to light. , 1996, Journal of neurophysiology.

[8]  T. Lamb,et al.  Kinetics of desensitization induced by saturating flashes in toad and salamander rods. , 1996, The Journal of physiology.

[9]  J. Hurley,et al.  Responses of the phototransduction cascade to dim light. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Y. Koutalos,et al.  Regulation of sensitivity in vertebrate rod photoreceptors by calcium , 1996, Trends in Neurosciences.

[11]  E. Pugh,et al.  The kinetics of inactivation of the rod phototransduction cascade with constant Ca2+i , 1996, The Journal of general physiology.

[12]  Y. Koutalos,et al.  Characterization of guanylate cyclase activity in single retinal rod outer segments , 1995, The Journal of general physiology.

[13]  Y. Koutalos,et al.  The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods , 1995, The Journal of general physiology.

[14]  H. Khorana,et al.  Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. , 1995, Biochemistry.

[15]  A. Milam,et al.  Rhodopsin Phosphorylation and Dephosphorylation in Vivo(*) , 1995, The Journal of Biological Chemistry.

[16]  David J. Baylor,et al.  Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant , 1995, Science.

[17]  P. Detwiler,et al.  The calcium feedback signal in the phototransduction cascade of vertebrate rods , 1994, Neuron.

[18]  T Hoshi,et al.  Shaker potassium channel gating. III: Evaluation of kinetic models for activation , 1994, The Journal of general physiology.

[19]  D. Baylor,et al.  Calcium controls light-triggered formation of catalytically active rhodopsin , 1994, Nature.

[20]  J. Jin,et al.  Modulation of transduction gain in light adaptation of retinal rods , 1994, Visual Neuroscience.

[21]  M. Cornwall,et al.  Evidence for the prolonged photoactivated lifetime of an analogue visual pigment containing 11 -cis 9-desmethylretinal , 1994, Visual Neuroscience.

[22]  P. Detwiler,et al.  Visual transduction in dialysed detached rod outer segments from lizard retina. , 1993, The Journal of physiology.

[23]  Satoru Kawamura,et al.  Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin , 1993, Nature.

[24]  T. Lamb,et al.  Amplification and kinetics of the activation steps in phototransduction. , 1993, Biochimica et biophysica acta.

[25]  V. Arshavsky,et al.  Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP , 1992, Nature.

[26]  Leon Lagnado,et al.  Signal flow in visual transduction , 1992, Neuron.

[27]  P. Detwiler,et al.  The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction , 1992, Neuron.

[28]  W. G. Owen,et al.  Temporal filtering in retinal bipolar cells. Elements of an optimal computation? , 1990, Biophysical journal.

[29]  L. Lagnado,et al.  Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients , 1989, Nature.

[30]  L. Stryer,et al.  Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions , 1988, Nature.

[31]  K. Yau,et al.  Calcium and light adaptation in retinal rods and cones , 1988, Nature.

[32]  T. Lamb,et al.  Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration , 1988, Nature.

[33]  K. Donner,et al.  Low retinal noise in animals with low body temperature allows high visual sensitivity , 1988, Nature.

[34]  N. Bennett,et al.  Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin). , 1988, Biochemistry.

[35]  D. Baylor,et al.  Gating kinetics of the cyclic-GMP-activated channel of retinal rods: flash photolysis and voltage-jump studies. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[36]  H R Matthews,et al.  Role of calcium in regulating the cyclic GMP cascade of phototransduction in retinal rods. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Baylor,et al.  Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores , 1986, Nature.

[38]  K. Yau,et al.  Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment , 1985, Nature.

[39]  E. Dratz,et al.  Phosphorylation at sites near rhodopsin'scarboxyl-terminus regulates light initiated CGMP hydrolysis , 1984, Vision Research.

[40]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[41]  J. L. Schnapf Dependence of the single photon response on longitudinal position of absorption in toad rod outer segments. , 1983, The Journal of physiology.

[42]  B. K. Fung Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. , 1983, The Journal of biological chemistry.

[43]  D. Baylor,et al.  Two components of electrical dark noise in toad retinal rod outer segments. , 1980, The Journal of physiology.

[44]  D. Baylor,et al.  The membrane current of single rod outer segments , 1979, Vision Research.

[45]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[46]  B. Sakitt Counting every quantum , 1972, The Journal of physiology.

[47]  H. Velden,et al.  The number of quanta necessary for the perception of light of the human eye. , 1946 .

[48]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[49]  K. Yau,et al.  Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment. , 1988, The Journal of physiology.

[50]  K. Yau,et al.  Guanosine 3',5'‐cyclic monophosphate‐activated conductance studied in a truncated rod outer segment of the toad. , 1988, The Journal of physiology.

[51]  H. A. VAN DER VELDEN,et al.  The number of quanta necessary for the perception of light of the human eye. , 1946, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.