Electrodeposition of Ge, Sn and GexSn1-x from two different room temperature ionic liquids

[1]  F. Endres,et al.  A Comparative Study on the Electrodeposition of Tin from Two Different Ionic Liquids: Influence of the Anion on the Morphology of the Tin Deposits , 2014 .

[2]  M. Olschewski,et al.  Insight into the Electrodeposition of SixGe1–x Thin Films with Variable Compositions from a Room Temperature Ionic Liquid , 2013 .

[3]  M. Olschewski,et al.  In Situ Spectroelectrochemical Investigation of Ge, Si, and SixGe1–x Electrodeposition from an Ionic Liquid , 2013 .

[4]  F. Endres,et al.  UV-Assisted Electrodeposition of Germanium from an Air- and Water-Stable Ionic Liquid , 2012 .

[5]  Toshiyuki Mine,et al.  Germanium fin light-emitting diode , 2011 .

[6]  J. Raty,et al.  First-principles design of efficient solar cells using two-dimensional arrays of core-shell and layered SiGe nanowires , 2011 .

[7]  R. Compton,et al.  A comparison of the cyclic voltammetry of the Sn/Sn(II) couple in the room temperature ionic liquids N-butyl-N-methylpyrrolidinium dicyanamide and N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide: solvent induced changes of electrode reaction mechanism. , 2010, Physical chemistry chemical physics : PCCP.

[8]  R. Atkin,et al.  AFM and STM Studies on the Surface Interaction of [BMP]TFSA and [EMIm]TFSA Ionic Liquids with Au(111) , 2009 .

[9]  F. Endres,et al.  Electrodeposition of Ge, Si and Si x Ge 1-x from an air- and water-stable ionic liquid. , 2008, Physical chemistry chemical physics : PCCP.

[10]  John Tolle,et al.  Raman scattering in Ge1−ySny alloys , 2007 .

[11]  Moon-Ho Jo,et al.  Fabrication of Si1−xGex alloy nanowire field-effect transistors , 2007 .

[12]  Yoshiaki Nakamura,et al.  Quantum-confinement effect in individual Ge1- xSnx quantum dots on Si(111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy , 2007 .

[13]  D. Macfarlane,et al.  Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids , 2006 .

[14]  John Kouvetakis,et al.  TIN-BASED GROUP IV SEMICONDUCTORS: New Platforms for Opto- and Microelectronics on Silicon , 2006 .

[15]  F. Endres,et al.  In situ STM investigation of gold reconstruction and of silicon electrodeposition on Au(111) in the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. , 2006, The journal of physical chemistry. B.

[16]  A. G. Rodríguez,et al.  Determination of the optical energy gap of Ge1−xSnx alloys with 0 , 2004 .

[17]  John Kouvetakis,et al.  Scaling law for the compositional dependence of Raman frequencies in SnGe and GeSi alloys , 2004 .

[18]  John Kouvetakis,et al.  Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers , 2003 .

[19]  Corey L. Bungay,et al.  Tunable band structure in diamond–cubic tin–germanium alloys grown on silicon substrates , 2003 .

[20]  F. Endres,et al.  Nanoscale electrodeposition of germanium on Au(111) from an ionic liquid: an in situ STM study of phase formation , 2002 .

[21]  M. McCartney,et al.  Synthesis of silicon-based infrared semiconductors in the Ge-Sn system using molecular chemistry methods. , 2001, Journal of the American Chemical Society.

[22]  M. McCartney,et al.  Simple chemical routes to diamond-cubic germanium-tin alloys , 2001 .

[23]  P. Milani,et al.  Raman, optical‐absorption, and transmission electron microscopy study of size effects in germanium quantum dots , 1996 .

[24]  H. Atwater,et al.  Synthesis of epitaxial SnxGe1−x alloy films by ion‐assisted molecular beam epitaxy , 1995 .

[25]  C. Bethea,et al.  Broadband (8-14 μm), normal incidence, pseudomorphic GexSi1-x/Si strained-layer infrared photodetector operating between 20 and 77 K , 1992 .