A stable cathode for the aprotic Li-O2 battery.

[1]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[2]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[3]  Shyue Ping Ong,et al.  First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery , 2011, Physical Review B.

[4]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[5]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[6]  Yang Shao-Horn,et al.  In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. , 2013, Nano letters.

[7]  N. Imanishi,et al.  Aqueous Lithium/Air Rechargeable Batteries , 2011 .

[8]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[9]  Jasim Uddin,et al.  A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. , 2013, Journal of the American Chemical Society.

[10]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[11]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[12]  Hubert A. Gasteiger,et al.  A Novel On-Line Mass Spectrometer Design for the Study of Multiple Charging Cycles of a Li-O2 Battery , 2013 .

[13]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[14]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[15]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[16]  Stephen J. Harris,et al.  In Situ Observation of Strains during Lithiation of a Graphite Electrode , 2010 .

[17]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[18]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[19]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[20]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[21]  Yongyao Xia,et al.  High performance Li–O2 battery using γ-MnOOH nanorods as a catalyst in an ionic-liquid based electrolyte , 2012 .

[22]  Jun Lu,et al.  Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes , 2011 .

[23]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[24]  Yongsug Tak,et al.  Relationship between carbon corrosion and positive electrode potential in a proton-exchange membrane fuel cell during start/stop operation , 2009 .

[25]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[26]  Yang Shao-Horn,et al.  Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth. , 2013, The journal of physical chemistry letters.

[27]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[28]  Si Hyoung Oh,et al.  Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. , 2012, Nature chemistry.

[29]  Linda F Nazar,et al.  The role of catalysts and peroxide oxidation in lithium-oxygen batteries. , 2013, Angewandte Chemie.

[30]  Dan Xu,et al.  A stable sulfone based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[31]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[32]  Sanjeev Mukerjee,et al.  Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte , 2013 .

[33]  Jan Farjh,et al.  A look into the future , 2011, 2011 IEEE Technology Time Machine Symposium on Technologies Beyond 2020.

[34]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[35]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[36]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[37]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[38]  B. Santo,et al.  Solid State , 2012 .

[39]  Haoshen Zhou,et al.  Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries. , 2013, Chemical communications.

[40]  Ji‐Guang Zhang,et al.  The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries , 2012 .

[41]  Stefan A. Freunberger,et al.  Li-O2 battery with a dimethylformamide electrolyte. , 2012, Journal of the American Chemical Society.

[42]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[43]  P. Novák,et al.  Critical aspects in the development of lithium–air batteries , 2013, Journal of Solid State Electrochemistry.

[44]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[45]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[46]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[47]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[48]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[49]  Kristina Edström,et al.  Ether Based Electrolyte, LiB(CN)4 Salt and Binder Degradation in the Li-O2 Battery Studied by Hard X-ray Photoelectron Spectroscopy (HAXPES) , 2012 .

[50]  Dahn,et al.  Phase diagram of LixC6. , 1991, Physical review. B, Condensed matter.

[51]  Gregory V. Chase,et al.  The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries , 2012 .

[52]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[53]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[54]  James F. Shackelford,et al.  The CRC Materials Science And Engineering Handbook , 1991 .

[55]  John O. Thomas,et al.  The source of first-cycle capacity loss in LiFePO4 , 2001 .

[56]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[57]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[58]  K. Amine,et al.  A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries. , 2012, Nano letters.