High-dimensional Data Visualization

One of the biggest challenges in data visualization is to find general representations of data that can display the multivariate structure of more than two variables. Several graphic types like mosaicplots, parallel coordinate plots, trellis displays, and the grand tour have been developed over the course of the last three decades. Each of these plots is introduced in a specific chapter of this handbook. This chapter will concentrate on investigating the strengths and weaknesses of these plots and techniques and contrast them in the light of data analysis problems. One very important issue is the aspect of interactivity. Except for trellis displays, all the above plots need interactive features to rise to their full power. Some, like the grand tour, are only defined by using dynamic graphics.

[1]  M. Friendly Mosaic Displays for Multi-Way Contingency Tables , 1994 .

[2]  Heike Hofmann,et al.  Interactive Graphics for Data Sets with Missing Values—MANET , 1996 .

[3]  Martin Theus,et al.  Visualizing Loglinear Models , 1999 .

[4]  Kurt Hornik,et al.  The Strucplot Framework: Visualizing Multi-way Contingency Tables with vcd , 2006 .

[5]  Andreas Buja,et al.  Grand tour methods: an outline , 1986 .

[6]  Hong Zhou,et al.  Splatting the Lines in Parallel Coordinates , 2009, Comput. Graph. Forum.

[7]  Martin Theus,et al.  Interactive Data Visualization using Mondrian , 2002 .

[8]  Richard A. Becker,et al.  The Visual Design and Control of Trellis Display , 1996 .

[9]  J. A. Hartigan,et al.  Mosaics for Contingency Tables , 1981 .

[10]  H. Hofmann Exploring categorical data: interactive mosaic plots , 2000 .

[11]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[12]  Alfred Inselberg,et al.  Parallel Coordinates: Visualization, Exploration and Classification of High-Dimensional Data , 2008 .

[13]  Graham J. Wills,et al.  Linked Data Views , 2008 .

[14]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[15]  Edward J. Wegman,et al.  The Grand Tour in k-Dimensions , 1992 .

[16]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[17]  Duncan Temple Lang,et al.  GGobi: evolving from XGobi into an extensible framework for interactive data visualization , 2003, Comput. Stat. Data Anal..

[18]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .