When chaos meets hyperchaos: 4D Rössler model

Abstract Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high-dimensional systems. In numerical simulations of these systems it is quite difficult to distinguish one from another behavior in some situations, as the results are frequently quite “noisy”. We show that in such systems a global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. This fact provides a mechanism for these noisy results. The coexistence of chaos and hyperchaos is proved via Computer-Assisted Proofs techniques.

[1]  Joachim Peinke,et al.  A p-Ge semiconductor experiment showing chaos and hyperchaos , 1989 .

[2]  F. Waldner,et al.  Symmetric Jacobian for local Lyapunov exponents and Lyapunov stability analysis revisited , 2012 .

[3]  Svetoslav Nikolov,et al.  Hyperchaos–chaos–hyperchaos transition in modified Rössler systems , 2006 .

[4]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[5]  Xiao-Song Yang,et al.  Hyperchaotic set in continuous chaos-hyperchaos transition , 2014, Communications in nonlinear science & numerical simulation.

[6]  O. Rössler An equation for hyperchaos , 1979 .

[7]  Zhuzhi Yuan,et al.  Blowout bifurcation and chaos–hyperchaos transition in five-dimensional continuous autonomous systems , 2009 .

[8]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[9]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[10]  Zbigniew Galias,et al.  Rigorous study of short periodic orbits for the Lorenz system , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[11]  Markus Eiswirth,et al.  Hyperchaos in a chemical reaction , 1992 .

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  Federico Frascoli,et al.  Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram. , 2013, Chaos.

[14]  H. Kokubu,et al.  Rigorous verification of cocoon bifurcations in the Michelson system , 2007 .

[15]  Zengqiang Chen,et al.  A new image encryption algorithm based on hyper-chaos , 2008 .

[16]  Ruedi Stoop,et al.  Real-world existence and origins of the spiral organization of shrimp-shaped domains. , 2010, Physical review letters.

[17]  D. Wilczak,et al.  Topological method for symmetric periodic orbits for maps with a reversing symmetry , 2004, math/0401145.

[18]  Daniel Wilczak,et al.  Uniformly Hyperbolic Attractor of the Smale-Williams Type for a Poincaré Map in the Kuznetsov System , 2010, SIAM J. Appl. Dyn. Syst..

[19]  E. Mosekilde,et al.  Bifurcations in two coupled Ro¨ssler systems , 1996 .

[20]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[21]  Sara Dadras,et al.  Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system , 2010 .

[22]  Chen Zengqiang,et al.  Hyperchaos?chaos?Hyperchaos Transition in a Class of On?Off Intermittent Systems Driven by a Family of Generalized Lorenz Systems , 2008 .

[23]  Nikolay V. Kuznetsov,et al.  Invariance of Lyapunov characteristic exponents, Lyapunov exponents, and Lyapunov dimension for regular and non-regular linearizations , 2014 .

[24]  Roberto Barrio,et al.  Coexistence and Dynamical Connections between Hyperchaos and Chaos in the 4D Rössler System: A Computer-Assisted Proof , 2016, SIAM J. Appl. Dyn. Syst..

[25]  Zbigniew Galias,et al.  Counting Low-Period Cycles for Flows , 2006, Int. J. Bifurc. Chaos.

[26]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[27]  Andrey Shilnikov,et al.  Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. , 2014, Chaos.

[28]  Zeng-qiang Chen,et al.  Design of Wireless Sensor Network Node with Hyperchaos Encryption Based on FPGA , 2009, 2009 International Workshop on Chaos-Fractals Theories and Applications.

[29]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[30]  Ljupco Kocarev,et al.  Forecast improvement in Lorenz 96 system , 2012 .

[31]  Daniel Wilczak Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system , 2009 .

[32]  Paulo C. Rech Chaos and hyperchaos in a Hopfield neural network , 2011, Neurocomputing.

[33]  Grebogi,et al.  Using the sensitive dependence of chaos (the "butterfly effect") to direct trajectories in an experimental chaotic system. , 1992, Physical review letters.

[34]  Renaldas Zioma,et al.  Butterfly effect , 2013, SIGGRAPH Computer Animation Festival.

[35]  Valentin Afraimovich,et al.  Origin and structure of the Lorenz attractor , 1977 .

[36]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[37]  Roberto Barrio,et al.  Topological changes in periodicity hubs of dissipative systems. , 2012, Physical review letters.

[38]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[39]  Kapitaniak,et al.  Chaos-hyperchaos transition , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[41]  Roberto Barrio,et al.  Crisis curves in nonlinear business cycles , 2012 .

[42]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[43]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[44]  E. Freire,et al.  An exact homoclinic orbit and its connection with the Rössler system , 2015 .