Modelling strengthening mechanisms in beta-type Ti alloys

[1]  K. Tsuchiya,et al.  Strain-rate effect on work-hardening behavior in β-type Ti-10Mo-1Fe alloy with TWIP effect , 2017 .

[2]  A. Borgenstam,et al.  New beta-type Ti-Fe-Sn-Nb alloys with superior mechanical strength , 2017 .

[3]  A. Borgenstam,et al.  Ti-Fe-Sn-Nb hypoeutectic alloys with superb yield strength and significant strain-hardening , 2017 .

[4]  P. Rivera-Díaz-del-Castillo,et al.  Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects , 2017 .

[5]  Guo-hua Zhao High-performance Load-bearing Alloys , 2017 .

[6]  D. V. Louzguine-Luzgin,et al.  Glass forming range of the Ti-Fe-Si amorphous alloys : An effective materials-design approach coupling CALPHAD and topological instability criterion , 2016 .

[7]  Guanghui Cao,et al.  Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition , 2016 .

[8]  P. Rivera-Díaz-del-Castillo,et al.  Modelling solid solution hardening in high entropy alloys , 2015 .

[9]  P. Rivera-Díaz-del-Castillo,et al.  Understanding the factors influencing yield strength on Mg alloys , 2014 .

[10]  T. Sourmail,et al.  The influence of silicon in tempered martensite: Understanding the microstructure-properties relationship in 0.5-0.6 wt.% C steels , 2014 .

[11]  E. Pereloma,et al.  The effect of cooling rates on the microstructure and mechanical properties of thermo-mechanically processed Ti-Al-Mo-V-Cr-Fe alloys , 2013 .

[12]  K. Knight,et al.  Neutron diffraction in situ monitoring of the dislocation density during martensitic transformation in a stainless steel , 2013 .

[13]  J. C. Huang,et al.  Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals , 2013 .

[14]  P. Castany,et al.  In situ TEM study of dislocation slip in a metastable β titanium alloy , 2012 .

[15]  K. Tsuchiya,et al.  Optimization of Strength, Ductility and Corrosion Resistance in Ti-Mo Base Alloys by Controlling Mo Equivalency and Bond Order , 2011 .

[16]  L. Kubin,et al.  Dislocation Mean Free Paths and Strain Hardening of Crystals , 2008, Science.

[17]  Thierry Hoc,et al.  Toward a physical model for strain hardening in fcc crystals , 2008 .

[18]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[19]  V. Lubarda On the effective lattice parameter of binary alloys , 2003 .

[20]  R Madec,et al.  From dislocation junctions to forest hardening. , 2002, Physical review letters.

[21]  T. Ungár,et al.  An X-ray method for the determination of stored energies in texture components of deformed metals: Application to cold worked ultra high purity iron , 2000 .

[22]  Paul J. Bania,et al.  Beta titanium alloys and their role in the titanium industry , 1994 .

[23]  O. Izumi,et al.  Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys , 1987 .

[24]  L. Cizek,et al.  Solid solution hardening of copper crystals , 1974 .

[25]  J. Rosenberg,et al.  Calculation of the taylor factor and lattice rotations for bcc metals deforming by pencil glide , 1971 .

[26]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .