METALLOPHTHALOCYANINES. GAS SENSORS, RESISTORS AND FIELD EFFECT TRANSISTORS

Abstract The conventional metallophthalocyanines (PcM, MCu, Zn, Ni …) are insulators when undoped. However, they possess accessible π and π* orbitals which make at least partial oxidization or reduction of the macrocycle possible with gases sush as NO 2 or O 3 . This yields more or less conductive molecular materials. Their resistance is, therefore, a measurement of the concentration of the oxidizing or reducing species present in the surrounding atmosphere (resistors). In the case of rare earth bisphthalocyanines (in particular the lutetium derivative), the intrinsic density of charge carriers is no longer negligeable and the corresponding thin films or crystals are semiconductors. Gases such as NO 2 , at moderate concentrations and temperatures, can afford completely oxidized materials: the doping process which increases the conductivity is therefore followed by an increase in the resistance. The same type of studies have been carried out using metallophthalocyanine as the electroactive (semiconductive) part of a field effect transistor (FET). After a schematic description of the chemical phenomena arising in molecular FET, a detailed chronology of their discovery is given. The influence of gases on FET characteristics is then reported.

[1]  P. Petit,et al.  A new series of molecular semiconductors: phthalocyanine radicals , 1987 .

[2]  G. Susich Identification of Organic Dyestuffs by X-Ray Powder Diffraction , 1950 .

[3]  S. C. Thorpe,et al.  Gas-sensing properties of semiconducting films of crown-ether-substituted phthalocyanines , 1992 .

[4]  R. A. Collins,et al.  Gas sensitivity of some metal phthalocyanines , 1988 .

[5]  J. Simon,et al.  The first field effect transistor based on an intrinsic molecular semiconductor , 1987 .

[6]  P. Petit,et al.  Two Examples of Molecular Semiconductors: Phthalocyanine Complexes of Lithium and Lutetium , 1988 .

[7]  H. D. Diesbach,et al.  Quelques sels complexes des o‐dinitriles avec le cuivre et la pyridine , 1927 .

[8]  John D. Wright,et al.  Understanding and Optimising NO2-Sensing Using Semiconducting Phthalocyanine Films , 1992 .

[9]  Gilles Horowitz,et al.  The oligothiophene‐based field‐effect transistor: How it works and how to improve it , 1990 .

[10]  R. Zengerle Polarisation splitter based on beam steering in periodic planar optical waveguides , 1988 .

[11]  L. Torsi,et al.  Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics , 1995, Science.

[12]  J. Simon,et al.  Transient properties of nickel phthalocyanine thin film transistors , 1994 .

[13]  D. Fichou,et al.  Organic-based field-effect transistors: Critical analysis of the semiconducting characteristics of organic materials , 1991 .

[14]  P. Hesto,et al.  Field-effect induced modulation of conduction in Langmuir-Blodgett films of ethylenedithiotetrathiofulvalene derivatives , 1994 .

[15]  A. R. Brown,et al.  Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators , 1995, Science.

[16]  Robert C. Haddon,et al.  C60 thin film transistors , 1995 .

[17]  C. Pearson,et al.  A field effect transistor based on Langmuir-Blodgett films of an Ni(dmit)2 charge transfer complex , 1994 .

[18]  J. Simon,et al.  Relationship between the structure and the electrical properties of lutetium bisphthalocyanine thin films , 1993 .

[19]  S. C. Thorpe,et al.  Effects of heat treatment on chemical, morphological and NO2-sensing properties of lead phthalocyanine films , 1992 .

[20]  J. Robertson,et al.  Molecular Weights of the Phthalocyanines , 1935, Nature.

[21]  Zhenan Bao,et al.  Highly ordered vacuum‐deposited thin films of metallophthalocyanines and their applications in field‐effect transistors , 1997 .

[22]  A. Tsumura,et al.  Field-effect transistor utilizing conducting polymers , 1989 .

[23]  R. Friend,et al.  New semiconductor device physics in polymer diodes and transistors , 1988, Nature.

[24]  D. E. Brodie,et al.  Some properties of metal-free amorphous phthalocyanine vacuum deposited films , 1981 .

[25]  A. Ebert,et al.  Infrared Spectra of Organic Compounds Exhibiting Polymorphism , 1952 .

[26]  G. Guillaud,et al.  Thin‐film transistors based on nickel phthalocyanine , 1989 .

[27]  C. Svensson,et al.  Fabrication and characterization of Schottky gate poly(3-alkylthiophene) planar field-effect transistors , 1993 .

[28]  Gilles Horowitz,et al.  X-ray determination of the crystal structure and orientation of vacuum evaporated sexithiophene films† , 1993 .

[29]  T. A. Jones,et al.  A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films , 1984 .

[30]  W. Göpel,et al.  Lead phthalocyanine (PbPc) as a prototype organic material for gas sensors: comparative electrical and spectroscopic studies to optimize O2 and NO2 sensing , 1989 .

[31]  Gilles Horowitz,et al.  A field-effect transistor based on conjugated alpha-sexithienyl , 1989 .

[32]  N. Oyama,et al.  Characteristics of a Field-Effect Transistor Fabricated with Electropolymerized Thin Film , 1988 .

[33]  C. Kuo,et al.  Field-effect transistor with polyaniline thin film as semiconductor , 1997 .

[34]  N. Uyeda,et al.  Transformation and growth of copper-phthalocyanine crystal in organic suspension , 1963 .

[35]  Y. Fujiyoshi,et al.  The observation of molecular orientations in crystal defects and the growth mechanism of thin phthalocyanine films , 1982 .

[36]  Magnus Willander,et al.  Field‐effect mobility of poly(3‐hexylthiophene) , 1988 .

[37]  Andreas Schütze,et al.  Quantitative ozone measurement using a phthalocyanine thin-film sensor and dynamic signal evaluation , 1995 .

[38]  Gilles Horowitz,et al.  All‐organic thin‐film transistors made of alpha‐sexithienyl semiconducting and various polymeric insulating layers , 1990 .

[39]  D. Kohl,et al.  A new microstructured silicon substrate for ultrathin gas-sensitive films , 1993 .

[40]  Gilles Horowitz,et al.  Structural basis for high carrier mobility in conjugated oligomers , 1991 .

[41]  B. Servet,et al.  Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers , 1993 .

[42]  R. Nakamura,et al.  Metal/intrinsic semiconductor/semiconductor field effect transistor fabricated from polycrystalline diamond films , 1994 .

[43]  T. Katsuyama,et al.  Nanocolumns composed of GaAs‐InAs jointed whiskers and SiO2 covers , 1994 .

[44]  C. Maleysson,et al.  Gaseous oxidation and compensating reduction of lutetium bis-phthalocyanine and lutetium phthalo-naphthalocyanine films , 1995 .

[45]  Y. Fujiyoshi,et al.  High‐resolution TEM images of zinc phthalocyanine polymorphs in thin films , 1981 .

[46]  G. Horowitz,et al.  All-organic field-effect transistors made of π-conjugated oligomers and polymeric insulators , 1993 .

[47]  A. Pauly,et al.  Conductivity and gas species content of (AlPcF)n thin films exposed to O2 or NO2 , 1994 .

[48]  M. Tsutsui,et al.  Some New Developments in Chemistry of Metallophthalocyanines. , 1980 .

[49]  D. Fichou,et al.  An all‐organic "soft" thin film transistor with very high carrier mobility , 1990 .

[50]  T. Kurokawa,et al.  Electrical properties of polyacetylene/polysiloxane interface , 1983 .

[51]  A. Braun,et al.  Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid , 1907 .

[52]  Gilles Horowitz,et al.  Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors , 1992 .

[53]  B. D. Berezin Coordination Compounds of Porphyrins and Phthalocyanine , 1981 .

[54]  K. Schoch,et al.  Morphology of metal phthalocyanine thin films , 1988 .

[55]  Henrik Stubb,et al.  Molecular field‐effect transistors using conducting polymer Langmuir–Blodgett films , 1990 .

[56]  Gilles Horowitz,et al.  Thin-film transistors based on alpha-conjugated oligomers , 1991 .

[57]  J. Simon,et al.  Bipolar junction formation in the case of molecular materials , 1987 .

[58]  J. Robertson 136. An X-ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds , 1935 .

[59]  M. Willander,et al.  Polymer based devices their function and characterization , 1993 .

[60]  Gilles Horowitz,et al.  An analytical model for organic‐based thin‐film transistors , 1991 .

[61]  G. Tollin,et al.  ELECTRICAL PROPERTIES OF ORGANIC SOLIDS. I. KINETICS AND MECHANISM OF CONDUCTIVITY OF METAL-FREE PHTHALOCYANINE , 1959 .

[62]  Howard E. Katz,et al.  Organic molecular solids as thin film transistor semiconductors , 1997 .

[63]  V. N. Spector,et al.  SOME TRENDS IN SORPTION PROCESSES ON THIN PHTHALOCYANINE FILMS , 1996 .

[64]  Malcolm J. Thompson,et al.  Thin film transistors for large area electronics , 1984 .

[65]  John D. Wright,et al.  Gas adsorption on phthalocyanines and its effects on electrical properties , 1989 .

[66]  H. Kuroda,et al.  Structure of lead phthalocyanine (triclinic form) , 1982 .

[67]  J. Simon,et al.  Lutetium bisphthalocyanine thin films for gas detection , 1992 .

[68]  A. Chadwick,et al.  Electron donor–acceptor interactions and surface semiconductivity in molecular crystals as a function of ambient gas , 1980 .

[69]  J. Simon,et al.  Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes , 1990 .

[70]  Hiroyuki Sakaki,et al.  Field‐effect transistors using alkyl substituted oligothiophenes , 1991 .

[71]  A. Yassar,et al.  All-Polymer Field-Effect Transistor Realized by Printing Techniques , 1994, Science.

[72]  J. Simon,et al.  A well-behaved field effect transistor based on an intrinsic molecular semiconductor , 1988 .

[73]  J. Simon,et al.  Semiconductivity and gas-sensing properties of crown-ether-substituted lutetium bisphthalocyanines , 1995 .

[74]  K. Yoshino,et al.  Fabrication and Characteristics of Schottky Gated Field Effect Transistors Utilizing Poly(1,4-naphthalene vinylene) and Poly(p-phenylene vinylene) , 1992 .

[75]  J. Andre,et al.  Characterization of metallophthalocyanine‐metal contacts: Electrical properties in a large frequency range , 1984 .

[76]  Lewis J. Rothberg,et al.  Electrically active organic and polymeric materials for thin-film-transistor technologies , 1996 .

[77]  G. Heiland,et al.  Electrical and optical properties of phthalocyanine films , 1987 .

[78]  P. Petit,et al.  Molecular semiconductors: Phthalocyanine radicals. Magnetic and electrical properties, field effect transistors , 1989 .

[79]  E. A. Lawton The Thermal Stability of Copper Phthalocyanine , 1958 .

[80]  Dago M. de Leeuw,et al.  Field-effect transistors made from solution-processed organic semiconductors , 1997 .

[81]  A. Lowe,et al.  216. Phthalocyanines. Part V. The molecular weight of magnesium phthalocyanine , 1934 .

[82]  R. D. Gould,et al.  Dependence of the mobility and trap concentration in evaporated copper phthalocyanine thin films on background pressure and evaporation rate , 1986 .

[83]  G. Horowitz,et al.  Structure Effects on Transport of Charge Carriers in Conjugated Oligomers , 1993 .

[84]  R. Chaâbane,et al.  Transient behaviour of thin film transistors based on nickel phthalocyanine , 1995 .

[85]  Zhenan Bao,et al.  Organic field‐effect transistors with high mobility based on copper phthalocyanine , 1996 .

[86]  L. Torsi,et al.  Molecular orbital energy level engineering in organic transistors , 1996 .

[87]  G. Horowitz Origin of the “ohmic” current in organic field‐effect transistors , 1996 .

[88]  R. Linstead,et al.  582. Phthalocyanines and related compounds. Part XXI. The oxidation of phthalocyanine, tetrabenzporphin, and allied substances , 1950 .

[89]  G. Horowitz,et al.  Influence de la nature de l'isolant sur les performances des transistors à effect de champ à base de sexithiényle alpha-conjugué , 1992 .

[90]  N. Uyeda,et al.  Solvent effects on crystal growth and transformation of zinc phthalocyanine , 1980 .

[91]  Jacques Simon,et al.  Field-effect transistors based on intrinsic molecular semiconductors , 1990 .

[92]  J. C. Decius,et al.  Observations Concerning Polymorphic Crystalline Modifications of the Phthalocyanines1 , 1952 .

[93]  M. Uren,et al.  A gas-sensitive field effect transistor utilizing a thin film of lead phthalocyanine as the gate material , 1987 .

[94]  F. Morin,et al.  Silicon TFTs for flat panel displays , 1983 .

[95]  J. Sharp,et al.  Spectroscopic characterization of a new polymorph of metal-free phthalocyanine , 1968 .

[96]  R. Haddon C70 THIN FILM TRANSISTORS , 1996 .

[97]  Torahiko Ando,et al.  Field-effect transistor with polythiophene thin film , 1987 .

[98]  G. Horowitz,et al.  Field‐effect transistor made with a sexithiophene single crystal , 1996 .

[99]  Torahiko Ando,et al.  Polythiophene field-effect transistor: Its characteristics and operation mechanism , 1988 .

[100]  M. Le Contellec,et al.  Field-effect transistor with diphthalocyanine thin film , 1988 .