Light types for polynomial time computation in lambda-calculus

We propose a new type system for lambda-calculus ensuring that well-typed programs can be executed in polynomial time: dual light affine logic (DIAL). DIAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of light affine logic (LAL). We show that contrarily to LAL, DIAL ensures good properties on lambda-terms: subject reduction is satisfied and a well-typed term admits a polynomial bound on the reduction by any strategy. Finally we establish that as LAL, DIAL allows to represent all polytime functions.

[1]  Aleksy Schubert The Complexity of beta-Reduction in Low Orders , 2001, TLCA.

[2]  Martin Hofmann Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..

[3]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[4]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[5]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[6]  Kazushige Terui,et al.  Light types for polynomial time computation in lambda-calculus , 2004, LICS 2004.

[7]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[8]  François Maurel Nondeterministic Light Logics and NP-Time , 2003, TLCA.

[9]  Helmut Schwichtenberg,et al.  Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..

[10]  Paris C. Kanellakis,et al.  On the expressive power of simply typed and let-polymorphic lambda calculi , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[11]  Ugo Dal Lago,et al.  Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.

[12]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[13]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[14]  Vincent Danos,et al.  On the linear decoration of intuitionistic derivations , 1995, Arch. Math. Log..

[15]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[16]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[17]  Patrick Baillot Stratified coherence spaces: a denotational semantics for light linear logic , 2004, Theor. Comput. Sci..

[18]  Paolo Coppola,et al.  Principal Typing in Elementary Affine Logic , 2003, TLCA.

[19]  Kazushige Terui,et al.  A Feasible Algorithm for Typing in Elementary Affine Logic , 2005, TLCA.

[20]  Martin Hofmann,et al.  Static prediction of heap space usage for first-order functional programs , 2003, POPL '03.

[21]  Daniel Leivant,et al.  Calibrating computational feasibility by abstraction rank , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[22]  Patrick Baillot Type inference for light affine logic via constraints on words , 2004, Theor. Comput. Sci..

[23]  Harry G. Mairson,et al.  LAL Is Square: Representation and Expressiveness in Light Affine Logic , 2002 .

[24]  Kazushige Terui,et al.  Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[25]  Paolo Coppola,et al.  Principal Typing for Lambda Calculus in Elementary Affine Logic , 2004, Fundam. Informaticae.

[26]  Gordon Plotkin,et al.  Type Theory and Recursion Extended Abstract , 2003, LICS 2003.

[27]  Patrick Baillot,et al.  Elementary Complexity and Geometry of Interaction , 1999, Fundam. Informaticae.

[28]  Masahito Hasegawa,et al.  Classical linear logic of implications , 2002, Mathematical Structures in Computer Science.

[29]  Martin Hofmann Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..

[30]  Paolo Coppola,et al.  Optimizing optimal reduction: A type inference algorithm for elementary affine logic , 2006, TOCL.

[31]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[32]  Olivier Laurent,et al.  Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[33]  Kazushige Terui,et al.  Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic , 2006, CSL.

[34]  Frank Pfenning,et al.  On a modal lambda calculus for S4 , 1995, MFPS.

[35]  Kazushige Terui Light Affine Set Theory: A Naive Set Theory of Polynomial Time , 2004, Stud Logica.

[36]  Martin Hofmann,et al.  Quantitative Models and Implicit Complexity , 2005, FSTTCS.

[37]  Ugo Dal Lago Context Semantics, Linear Logic and Computational Complexity , 2005, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[38]  Andrzej S. Murawski,et al.  On an interpretation of safe recursion in light affine logic , 2004, Theor. Comput. Sci..

[39]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[40]  Patrick Baillot Checking Polynomial Time Complexity with Types , 2002, IFIP TCS.

[41]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[42]  Paolo Coppola,et al.  Typing Lambda Terms in Elementary Logic with Linear Constraints , 2001, TLCA.

[43]  Damiano Mazza Linear logic and polynomial time , 2006, Math. Struct. Comput. Sci..