Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories

This paper investigates the dynamic pull-in behavior of microplates actuated by a suddenly applied electrostatic force. Electrostatic, elastic and fluid domains are involved in modeling. First-order shear deformation plate theory and classical plate theory are used to model the geometrically nonlinear microplates. The equations of motion are descritized by the finite element method. The effects of nonlinearity, fluid pressure, initial stress and different geometric parameters on dynamic behavior are examined. In addition, the influences of initial stress and actuation voltage on oscillatory behavior of microplates are evaluated.

[1]  M. Younis,et al.  Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load , 2007 .

[2]  M. Porfiri,et al.  Vibrations of narrow microbeams predeformed by an electric field , 2008 .

[3]  Guang Meng,et al.  Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices , 2007, Sensors (Basel, Switzerland).

[4]  T. Veijola,et al.  Equivalent-circuit model of the squeezed gas film in a silicon accelerometer , 1995 .

[5]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .

[6]  W. Miller,et al.  A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams , 2005 .

[7]  Hua Li,et al.  A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump , 2004 .

[8]  S. Krylov,et al.  Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force , 2004 .

[9]  M. Porfiri,et al.  Review of modeling electrostatically actuated microelectromechanical systems , 2007 .

[10]  Peter M. Osterberg,et al.  Electrostatically actuated microelectromechanical test structures for material property measurement , 1995 .

[11]  S. Krylov Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures , 2007 .

[12]  Davide Spinello,et al.  REDUCED-ORDER MODELS FOR MICROELECTROMECHANICAL RECTANGULAR AND CIRCULAR PLATES INCORPORATING THE CASIMIR FORCE , 2008 .

[13]  R. C. Batraa,et al.  Vibrations and pullin instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force , 2008 .

[14]  D. Rixen,et al.  Electrostatic coupling of MEMS structures: transient simulations and dynamic pull-in , 2005 .

[15]  Sundman Bo.,et al.  エレクトロウェッティングディスプレイの油脱ぬれパターンの観測と光学的意味 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2008 .

[16]  Paul C.-P. Chao,et al.  DC dynamic pull-in predictions for a generalized clamped–clamped micro-beam based on a continuous model and bifurcation analysis , 2008 .

[17]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[18]  M. Younis Modeling and Simulation of Microelectromechanical Systems in Multi-Physics Fields , 2004 .

[19]  George G. Adams,et al.  A dynamic model, including contact bounce, of an electrostatically actuated microswitch , 2002 .

[20]  S. F.R.,et al.  The coalescence of closely spaced drops when they are at different electric potentials , 1968 .

[21]  Davide Spinello,et al.  Vibrations and pull-in instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force , 2008 .