On some semilattice structures for production technologies

Tracing back from Charnes et al. [9] many approaches have been proposed to extend the DEA production model to non-convex technologies. The FDH method were introduced by Deprins et al. [13] and it only assumes a free disposal assumption of the technology. This paper, continues further an earlier work by Briec and Horvath [7]. Among other things, a new class of semilattice production technologies is introduced. Duality results as well as computational issues are proposed.

[1]  Elimhan N. Mahmudov,et al.  1 – Convex Sets and Functions , 2011 .

[2]  Per J. Agrell,et al.  A Caveat on the Measurement of Productive Efficiency , 2001 .

[3]  N. Kaldor,et al.  The Equilibrium of the Firm , 1934 .

[4]  Alexander Rubinov,et al.  𝔹-Convex Sets and Functions , 2006 .

[5]  Philippe Vanden Eeckaut,et al.  Non-parametric efficiency, progress and regress measures for panel data: Methodological aspects☆ , 1995 .

[6]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[7]  A. Charnes,et al.  Invariant multiplicative efficiency and piecewise cobb-douglas envelopments , 1983 .

[8]  N. Petersen Data Envelopment Analysis on a Relaxed Set of Assumptions , 1990 .

[9]  K. D. Eason Human interaction with computers: H.T. SMITH and T.R.G. GREEN (Eds.) Academic Press, London, 1980, x + 369 pages, £6.40 , 1982 .

[10]  Jean-Philippe Boussemart,et al.  alpha-Returns to scale and multi-output production technologies , 2009, Eur. J. Oper. Res..

[11]  Charles Horvath,et al.  Topological convexities, selections and fixed points , 2008 .

[12]  Kaoru Tone,et al.  Scale, Indivisibilities and Production Function in Data Envelopment Analysis , 2003 .

[13]  Kristiaan Kerstens,et al.  Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit , 1999, Eur. J. Oper. Res..

[14]  T. Koopmans,et al.  Activity Analysis of Production and Allocation. , 1952 .

[15]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[16]  Henry Tulkens,et al.  On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit , 1993 .

[17]  Walter Briec,et al.  A B-convex production model for evaluating performance of firms , 2009 .

[18]  V. V. Podinovski,et al.  Selective convexity in DEA models , 2005, Eur. J. Oper. Res..

[19]  R. Shepherd Theory of cost and production functions , 1970 .

[20]  Majid Soleimani-Damaneh,et al.  On the estimation of returns-to-scale in FDH models , 2006, Eur. J. Oper. Res..

[21]  R. H. Strotz The Empirical Implications of a Utility Tree , 1957 .

[22]  Peter Bogetoft,et al.  DEA on relaxed convexity assumptions , 1996 .

[23]  Alexander M. Rubinov,et al.  Downward Sets and their separation and approximation properties , 2002, J. Glob. Optim..

[24]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[25]  Walter Briec,et al.  On the separation of convex sets in some idempotent semimodules , 2011 .

[26]  A. Charnes,et al.  A multiplicative model for efficiency analysis , 1982 .

[27]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[28]  Dominique Deprins,et al.  Measuring Labor-Efficiency in Post Offices , 2006 .

[29]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[30]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[31]  Timo Kuosmanen,et al.  Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions , 2011, Eur. J. Oper. Res..

[32]  Ulrich Kohli,et al.  Non-joint Technologies , 1983 .