High-order ADI scheme for option pricing in stochastic volatility models

We propose a new high-order alternating direction implicit (ADI) finite difference scheme for the solution of initial-boundary value problems of convection-diffusion type with mixed derivatives and non-constant coefficients, as they arise from stochastic volatility models in option pricing. Our approach combines different high-order spatial discretisations with Hundsdorfer and Verwer's ADI time-stepping method, to obtain an efficient method which is fourth-order accurate in space and second-order accurate in time. Numerical experiments for the European put option pricing problem using Heston's stochastic volatility model confirm the high-order convergence.

[1]  Christof Heuer,et al.  High-Order Compact Schemes for Parabolic Problems with Mixed Derivatives in Multiple Space Dimensions , 2014, SIAM J. Numer. Anal..

[2]  Joke Blom,et al.  Time integration of the shallow water equations in spherical geometry , 2001 .

[3]  R. F. Warming,et al.  Alternating Direction Implicit Methods for Parabolic Equations with a Mixed Derivative , 1980 .

[4]  Christoph Schwab,et al.  Sparse Wavelet Methods for Option Pricing under Stochastic Volatility , 2004 .

[5]  Michael Günther,et al.  High-order ADI schemes for diffusion equations with mixed derivatives in the combination technique , 2016 .

[6]  Ansgar Jüngel,et al.  Convergence of a High-Order Compact Finite Difference Scheme for a Nonlinear Black-Scholes Equation , 2004 .

[7]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[8]  Christof Heuer,et al.  High-Order Compact Finite Difference Schemes for Option Pricing in Stochastic Volatility Models on Non-Uniform Grids , 2014, J. Comput. Appl. Math..

[9]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[10]  Peter F. Christoffersen,et al.  Models for S&P 500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices , 2007 .

[11]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[12]  Olof B. Widlund,et al.  Smoothing of initial data and rates of convergence for parabolic difference equations , 1970 .

[13]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[14]  Graeme Fairweather,et al.  Improved forms of the alternating direction methods of Douglas, Peaceman, and Rachford for solving parabolic and elliptic equations , 1964 .

[15]  Bertram Düring,et al.  Asset pricing under information with stochastic volatility , 2008 .

[16]  J. J. Douglas Alternating direction methods for three space variables , 1962 .

[17]  Michel Fournié,et al.  High Order Compact Schemes in Projection Methods for Incompressible Viscous Flows , 2011 .

[18]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[19]  Peter A. Forsyth,et al.  Convergence remedies for non-smooth payoffs in option pricing , 2003 .

[20]  Bruno Welfert,et al.  Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms , 2007 .

[21]  Cornelis W. Oosterlee,et al.  Two-Dimensional Fourier Cosine Series Expansion Method for Pricing Financial Options , 2012, SIAM J. Sci. Comput..

[22]  Bertram Düring,et al.  High-Order Compact Finite Difference Scheme for Option Pricing in Stochastic Volatility Models , 2010, J. Comput. Appl. Math..

[23]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[24]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[25]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[26]  Abdul-Qayyum M. Khaliq,et al.  High-order compact scheme for solving nonlinear Black–Scholes equation with transaction cost , 2009, Int. J. Comput. Math..

[27]  Willem Hundsdorfer,et al.  Accuracy and stability of splitting with stabilizing corrections , 2002 .

[28]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[29]  Eric Benhamou,et al.  Time Dependent Heston Model , 2009, SIAM J. Financial Math..

[30]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[31]  Murli M. Gupta,et al.  A single cell high order scheme for the convection‐diffusion equation with variable coefficients , 1984 .

[32]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[33]  J. Douglas,et al.  A general formulation of alternating direction methods , 1964 .

[34]  Schémas compacts d'ordre élevé: application aux problèmes bidimensionnels de diffusion-convection instationnaire I , 1999 .

[35]  Bertil Gustafsson,et al.  The convergence rate for difference approximations to general mixed initial boundary value problems , 1981 .

[36]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[37]  David A. Kopriva,et al.  A Spectral Element Approximation to Price European Options with One Asset and Stochastic Volatility , 2010, J. Sci. Comput..

[38]  Graham F. Carey,et al.  Extension of high‐order compact schemes to time‐dependent problems , 2001 .

[39]  Peter Christoffersen,et al.  Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns and Option Prices , 2007 .

[40]  Ansgar Jüngel,et al.  High Order Compact Finite Difference Schemes for a Nonlinear Black-Scholes Equation , 2001 .

[41]  Bertram During,et al.  High-Order ADI Schemes for Convection-Diffusion Equations with Mixed Derivative Terms , 2014 .

[42]  Bertram Düring Asset pricing under information with stochastic volatility , 2009 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .