Quantum Networks Based on Single Photons

Quantum networks rely on the transfer of quantum information between stationary quantum nodes. Physically the nodes are connected by single photons. In a first part of this chapter we address different components of a quantum network. We start with a discussion of semiconductor photon sources with an emission wavelength near 900 nm. In order to make them suitable for fiber-networks a conversion to the telecom band is required. We describe how such converters can be realized with the help of nonlinear optics. Next we address photon storage devices as crucial components of quantum repeaters, which are necessary to establish quantum key distribution (QKD) over long distances. We concentrate on the approach of room-temperature gas cells filled with alkali atoms and outline first promising result. In a second part we address a special QKD protocol, the so-called time-frequency (TF) protocol. It can mostly be realized with off-the-shelf components and its encoding of quantum bits in frequency and time suggests a straightforward way to utilize multiplexing. We analyze the TF-protocol numerically before we report on an actual free-space link over 100 m as a testbed for a quantum network in a realistic environment.

[1]  Naoto Namekata,et al.  1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. , 2009, Optics express.

[2]  Ian A. Walmsley,et al.  A cavity-enhanced room-temperature broadband Raman memory , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[3]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[4]  T. Ralph,et al.  Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[5]  Christian Hepp,et al.  Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. , 2012, Physical review letters.

[6]  Wei Zhang,et al.  Raman quantum memory of photonic polarized entanglement , 2014, 1410.7101.

[7]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[8]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[9]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[10]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[11]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[12]  Y. H. Chen,et al.  Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. , 2010, Physical review letters.

[13]  Z. Ou,et al.  Multi-photon quantum interference , 2007 .

[14]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[15]  D. F. Kimball,et al.  Relaxation of atomic polarization in paraffin-coated cesium vapor cells (13 pages) , 2005 .

[16]  Norbert Mercier,et al.  Response to Comment on “The earliest modern humans outside Africa” , 2018, Science.

[17]  V. Zwiller,et al.  On-demand generation of background-free single photons from a solid-state source , 2017, 1712.06937.

[18]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[19]  Ronald Freund,et al.  Single-mode optical antenna for high-speed and quantum communications , 2018 .

[20]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[21]  Michael Jetter,et al.  Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition , 2016, Nature Communications.

[22]  Min-Sun Park,et al.  Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE , 2014, Nature Communications.

[23]  B. R. Mollow Power spectrum of light scattered by two-level systems , 1969 .

[24]  Peter Michler,et al.  Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators , 2012 .

[25]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[26]  M. Cao,et al.  Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble , 2017, Nature Communications.

[27]  D. Englund,et al.  Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding , 2015 .

[28]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[29]  Mats-Erik Pistol,et al.  Single quantum dots emit single photons at a time: Antibunching experiments , 2001 .

[30]  O. Schmidt,et al.  Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot , 2011 .

[31]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[33]  H. Weinfurter,et al.  Observation of entanglement of a single photon with a trapped atom. , 2006, Physical review letters.

[34]  Janik Wolters,et al.  Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons. , 2017, Physical review letters.

[35]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[36]  O. Schmidt,et al.  Corrigendum: High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots , 2016, Nature Communications.

[37]  Oliver Benson,et al.  Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength , 2017 .

[38]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[39]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[40]  Oliver G. Schmidt,et al.  Atomic Clouds as Spectrally-Selective and Tunable Delay Lines for Single Photons from Quantum Dots , 2015 .

[41]  S. F. Covre da Silva,et al.  Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. , 2018, Physical review letters.

[42]  Johann Peter Reithmaier,et al.  Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots , 2013 .

[43]  Timothy P. Spiller Quantum Communications Hub, EPSRC , 2018, Impact.

[44]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[45]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[46]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[47]  P. Michler,et al.  Spectroscopy of the D 1 transition of cesium by dressed-state resonance fluorescence from a single (In,Ga)As/GaAs quantum dot , 2014, 1402.2396.

[48]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[49]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.

[50]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[51]  Ivan B. Djordjevic,et al.  Weak-coherent-state-based time-frequency quantum key distribution , 2015 .

[52]  Jonathan M. Kindem,et al.  Nanophotonic rare-earth quantum memory with optically controlled retrieval , 2017, Science.

[53]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[54]  Philippe Goldner,et al.  Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory. , 2015, Physical review letters.

[55]  Mark Um,et al.  Single-qubit quantum memory exceeding ten-minute coherence time , 2017, 1701.04195.

[56]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[57]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[58]  Tobias Heindel,et al.  A stand-alone fiber-coupled single-photon source , 2017, Scientific Reports.

[59]  Ran Finkelstein,et al.  Fast, noise-free memory for photon synchronization at room temperature , 2017, Science Advances.

[60]  Robert Elschner,et al.  Practical implementation and evaluation of a quantum-key-distribution scheme based on the time-frequency uncertainty , 2015 .

[61]  Michael Jetter,et al.  Two-photon interference in an atom–quantum dot hybrid system , 2018 .

[62]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[63]  Jian-Wei Pan,et al.  QUANTUM OPTICS Push-button photon entanglement , 2014 .

[64]  Mario Dagenais,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[65]  A. Feizpour,et al.  High-speed noise-free optical quantum memory , 2017, 1704.00013.

[66]  J. Martín-Sánchez,et al.  Wavelength-tunable sources of entangled photons interfaced with atomic vapours , 2016, Nature Communications.

[67]  Johann Peter Reithmaier,et al.  Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities , 2017 .

[68]  Chip Elliott,et al.  Current status of the DARPA quantum network (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[69]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[70]  Michael Jetter,et al.  Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K , 2018, Physical Review B.

[71]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[72]  Oliver Benson,et al.  Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. , 2010, Physical review letters.

[73]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[74]  Robert Elschner,et al.  Numerical assessment and optimization of discrete-variable time-frequency quantum key distribution , 2017 .

[75]  O. Schmidt,et al.  An artificial Rb atom in a semiconductor with lifetime-limited linewidth , 2015, 1508.06461.

[76]  G. Sęk,et al.  Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography , 2018, AIP Advances.

[77]  C. Monroe,et al.  Observation of entanglement between a single trapped atom and a single photon , 2004, Nature.

[78]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[79]  Daniel J. Gauthier,et al.  Robust and Stable Delay Interferometers with Application to d -Dimensional Time-Frequency Quantum Key Distribution , 2016, 1610.04947.

[80]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[81]  W. S. Kolthammer,et al.  Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory , 2014, 1405.1470.

[82]  A J Shields,et al.  A quantum light-emitting diode for the standard telecom window around 1,550 nm , 2017, Nature Communications.

[83]  W. Moerner,et al.  Single photons on demand from a single molecule at room temperature , 2000, Nature.

[84]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[85]  James Keaveney,et al.  Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor , 2010 .

[86]  Gregor Weihs,et al.  Time-bin entangled photons from a quantum dot , 2008, Nature Communications.

[87]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[88]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.