High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies.

High temperature proton exchange membrane fuel cells (HT-PEMFCs) are one type of promising energy device with the advantages of fast reaction kinetics (high energy efficiency), high tolerance to fuel/air impurities, simple plate design, and better heat and water management. They have been expected to be the next generation of PEMFCs specifically for application in hydrogen-fueled automobile vehicles and combined heat and power (CHP) systems. However, their high-cost and low durability interposed by the insufficient performance of key materials such as electrocatalysts and membranes at high temperature operation are still the challenges hindering the technology's practical applications. To develop high performance HT-PEMFCs, worldwide researchers have been focusing on exploring new materials and the related technologies by developing novel synthesis methods and innovative assembly techniques, understanding degradation mechanisms, and creating mitigation strategies with special emphasis on catalysts for oxygen reduction reaction, proton exchange membranes and bipolar plates. In this paper, the state-of-the-art development of HT-PEMFC key materials, components and device assembly along with degradation mechanisms, mitigation strategies, and HT-PEMFC based CHP systems is comprehensively reviewed. In order to facilitate further research and development of HT-PEMFCs toward practical applications, the existing challenges are also discussed and several future research directions are proposed in this paper.

[1]  Y. Tong,et al.  Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC , 2020, Applied Catalysis B: Environmental.

[2]  X. Duan,et al.  Molecular Design of Single‐Atom Catalysts for Oxygen Reduction Reaction , 2020, Advanced Energy Materials.

[3]  C. Ozgur Colpan,et al.  Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system , 2020 .

[4]  M. Guiver,et al.  Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes , 2020 .

[5]  Zehui Yang,et al.  In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application , 2019, International Journal of Hydrogen Energy.

[6]  Qingfeng Li,et al.  Feasibility of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells based in phosphoric acid-doped membrane , 2019, International Journal of Hydrogen Energy.

[7]  F. Vidal,et al.  Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH3 catalyst , 2019, Energy & Environmental Science.

[8]  Alexey A. Pechenkin,et al.  Production of Hydrogen-Rich Gas by Formic Acid Decomposition over CuO-CeO2/γ-Al2O3 Catalyst , 2019, Energies.

[9]  K. Wippermann,et al.  Bilayer CrN/Cr coating-modified 316L stainless steel bipolar plates for high temperature polymer electrolyte fuel cells , 2019, Journal of Power Sources.

[10]  D. Ratna,et al.  α-ZrP Nanoreinforcement Overcomes the Trade Off Between Phosphoric Acid Dopability and Thermomechanical Properties: Nanocomposite HTPEM with Stable Fuel Cell Performance. , 2019, ACS applied materials & interfaces.

[11]  B. Fox,et al.  Multifunctionality in Epoxy Resins , 2019, Polymer Reviews.

[12]  D. Cullen,et al.  High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites , 2019, Energy & Environmental Science.

[13]  W. Lehnert,et al.  Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation , 2019, Journal of Electrochemical Energy Conversion and Storage.

[14]  A. Dyck,et al.  Evaluation of HT-PEM MEAs: Load cycling versus start/stop cycling , 2019, International Journal of Hydrogen Energy.

[15]  Y. Devrim,et al.  Multi-walled carbon nanotubes decorated by platinum catalyst for high temperature PEM fuel cell , 2019, International Journal of Hydrogen Energy.

[16]  M. Swihart,et al.  Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation , 2019, Nature Catalysis.

[17]  Q. Ma,et al.  Achieving high Pt utilization and superior performance of high temperature polymer electrolyte membrane fuel cell by employing low-Pt-content catalyst and microporous layer free electrode design , 2019, Journal of Power Sources.

[18]  F. Büchi,et al.  Wetting properties of porous high temperature polymer electrolyte fuel cells materials with phosphoric acid. , 2019, Physical chemistry chemical physics : PCCP.

[19]  S. Primdahl,et al.  Enabling industrial production of electrodes by use of slot-die coating for HT-PEM fuel cells , 2019, International Journal of Hydrogen Energy.

[20]  Darija Susac,et al.  Membrane dehydration with increasing current density at high inlet gas relative humidity in polymer electrolyte membrane fuel cells , 2019, Journal of Power Sources.

[21]  D. Walsh,et al.  The Nature of Proton Shuttling in Protic Ionic Liquid Fuel Cells , 2019, Advanced Energy Materials.

[22]  Dong Kyu Kim,et al.  Operating strategy for successful start-up in self-humidified polymer electrolyte membrane fuel-cell system , 2019, Applied Thermal Engineering.

[23]  Yu-Chuan Su,et al.  High-performance and low-leakage phosphoric acid fuel cell with synergic composite membrane stacking of micro glass microfiber and nano PTFE , 2019, Renewable Energy.

[24]  R. Chtourou,et al.  Silica/montmorillonite nanoarchitectures and layered double hydroxide-SPEEK based composite membranes for fuel cells applications , 2019, Applied Clay Science.

[25]  S. Jiang,et al.  Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for High‐Temperature Polymer Electrolyte Membrane Fuel Cells , 2019, Advanced science.

[26]  Shaukat Saeed,et al.  Chemically tethered functionalized graphene oxide based novel sulfonated polyimide composite for polymer electrolyte membrane , 2019, Journal of Polymer Research.

[27]  Wan Ramli Wan Daud,et al.  Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review , 2019, International Journal of Hydrogen Energy.

[28]  M. Guiver,et al.  Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane , 2019, Nature Communications.

[29]  Dipan Kundu,et al.  Development of Hierarchically Porous Ionomer Membranes for Versatile and Fast Metal Ion Conduction , 2019, ACS omega.

[30]  Tomaž Katrašnik,et al.  Predictive virtual modelling framework for performance and platinum degradation modelling of high temperature PEM fuel cells , 2019, Energy Procedia.

[31]  S. Kær,et al.  Investigation of the Effect of Humidity Level of H2 on Cell Performance of a HT‐PEM Fuel Cell , 2019, Fuel Cells.

[32]  M. Nasef,et al.  Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells , 2019, Journal of Power Sources.

[33]  Andrea Luigi Facci,et al.  Numerical modeling of an automotive derivative polymer electrolyte membrane fuel cell cogeneration system with selective membranes , 2019, International Journal of Hydrogen Energy.

[34]  Shuang Wang,et al.  Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications , 2019, Journal of the Taiwan Institute of Chemical Engineers.

[35]  Venkata Suresh Patnaikuni,et al.  Detailed analysis of polymer electrolyte membrane fuel cell with enhanced cross‐flow split serpentine flow field design , 2019, International Journal of Energy Research.

[36]  Vinod M. Janardhanan,et al.  Kinetics of electrochemical charge transfer in HT-PEM fuel cells , 2019, Electrochimica Acta.

[37]  J. Nakamura,et al.  Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen‐Doped Carbon Materials , 2018, Advanced materials.

[38]  D. Gerteisen,et al.  Fast and Reliable State-of-Health Model of a PEM Cathode Catalyst Layer , 2019, Journal of The Electrochemical Society.

[39]  Hemanth Kumar Tanneru,et al.  Rapid humidity regulation by mixing of dry and humid gases with feedback control for PEM fuel cells , 2019, International Journal of Hydrogen Energy.

[40]  D. Cao,et al.  Sulfur, Nitrogen and Fluorine Triple‐Doped Metal‐Free Carbon Electrocatalysts for the Oxygen Reduction Reaction , 2018, ChemElectroChem.

[41]  Huanhuan Li,et al.  Preparation and Investigation of Reinforced PVP Blend Membranes for High Temperature Polymer Electrolyte Membranes , 2018, Fibers and Polymers.

[42]  S. Neophytides,et al.  Physical modeling of the electrochemical impedance spectra for the O2 reduction reaction in HTPEM fuel cells’ cathodic electrochemical interface , 2018, Electrochimica Acta.

[43]  Zehui Yang,et al.  Fabrication of Stable and Well‐connected Proton Path in Catalyst Layer for High Temperature Polymer Electrolyte Fuel Cells , 2018 .

[44]  Xianguo Li,et al.  Humidification strategy for polymer electrolyte membrane fuel cells – A review , 2018, Applied Energy.

[45]  Li Xu,et al.  In-situ diagnosis on performance degradation of high temperature polymer electrolyte membrane fuel cell by examining its electrochemical properties under operation , 2018, International Journal of Hydrogen Energy.

[46]  Quantong Che,et al.  Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers , 2018, Journal of Molecular Liquids.

[47]  Yi Jia,et al.  Defects on carbons for electrocatalytic oxygen reduction. , 2018, Chemical Society reviews.

[48]  Zhengkai Tu,et al.  Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review , 2018, Fuel Processing Technology.

[49]  L. Cleemann,et al.  Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions , 2018, Applied Catalysis B: Environmental.

[50]  Werner Lehnert,et al.  Design and experimental validation of an HT-PEFC stack with metallic BPP , 2018, International Journal of Hydrogen Energy.

[51]  I. Manke,et al.  Nano-scale Monte Carlo study on liquid water distribution within the polymer electrolyte membrane fuel cell microporous layer, catalyst layer and their interfacial region , 2018, Journal of Power Sources.

[52]  Quantong Che,et al.  Preparation of the Multicomponent High Temperature Proton Exchange Membranes with Layer by Layer Self-assembly Technique , 2018, Fibers and Polymers.

[53]  Jianqiu Li,et al.  Study on voltage clamping and self-humidification effects of pem fuel cell system with dual recirculation based on orthogonal test method , 2018, International Journal of Hydrogen Energy.

[54]  K. Artyushkova,et al.  Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells , 2018, Electrochemistry Communications.

[55]  S. Roualdès,et al.  Phosphonic acid-based membranes as proton conductors prepared by a pulsed plasma enhanced chemical vapor deposition technique , 2018, Thin Solid Films.

[56]  C. Pak,et al.  Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles , 2018, Journal of Membrane Science.

[57]  A. Dyck,et al.  Determination of Long-Term Stability and Quality of HT-PEM MEAs , 2018, ECS Transactions.

[58]  M. Bodner,et al.  Upscaling the Production of High Temperature Polymer Electrolyte Membrane Fuel Cells – an Assessment of Reproducibility, Performance and Durability , 2018, ECS Transactions.

[59]  J. Pharoah,et al.  Simple and Complex Polymer Electrolyte Fuel Cell Stack Models: A Comparison , 2018, ECS Transactions.

[60]  Jin Young Kim,et al.  Effect of Catalyst Pore Size on the Performance of Non‐Precious Fe/N/C‐Based Electrocatalysts for High‐Temperature Polymer Electrolyte Membrane Fuel Cells , 2018 .

[61]  H. Yang,et al.  Surface Fluorination to Boost the Stability of the Fe/N/C Cathode in Proton Exchange Membrane Fuel Cells , 2018 .

[62]  Chengbin Li,et al.  Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: Effect of the core composition on the activity towards oxygen reduction reactions , 2018, Applied Catalysis A: General.

[63]  Chen-Yu Chen,et al.  Development and performance evaluation of a high temperature proton exchange membrane fuel cell with stamped 304 stainless steel bipolar plates , 2018, International Journal of Hydrogen Energy.

[64]  F. J. Pinar,et al.  Long‐term Operation of High Temperature Polymer Electrolyte Membrane Fuel Cells with Fuel Composition Switching and Oxygen Enrichment , 2018 .

[65]  V. Hacker,et al.  Conceptual design and life cycle assessment of decentralized power generation by HT-PEMFC system with sorption enhanced water gas shift loop , 2018, Energy Conversion and Management.

[66]  K. Bouzek,et al.  Three-dimensional macrohomogeneous mathematical model of an industrial-scale high-temperature PEM fuel cell stack , 2018 .

[67]  Jingshuai Yang,et al.  New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone)s for high temperature polymer electrolyte fuel cells , 2018 .

[68]  Hee‐Tak Kim,et al.  An electrode-supported fabrication of thin polybenzimidazole membrane-based polymer electrolyte membrane fuel cell , 2018 .

[69]  W. Lehnert,et al.  Stochastic Analysis of the Gas Flow at the Gas Diffusion Layer/Electrode Interface of a High-Temperature Polymer Electrolyte Fuel Cell , 2018, Transport in Porous Media.

[70]  J. Kallitsis,et al.  Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells , 2018 .

[71]  Joshua P. McClure,et al.  Ordered mesoporous FeNx-doped carbon: a class of highly active and stable catalysts in acids, bases and polymer electrolyte membrane fuel cells , 2018 .

[72]  T. Jana,et al.  Polymer electrolyte membrane from polybenzimidazoles: Influence of tetraamine monomer structure , 2018 .

[73]  Gaixia Zhang,et al.  A specific demetalation of Fe–N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells , 2018 .

[74]  Young Soo Yoon,et al.  Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell , 2018 .

[75]  D. Banerjee,et al.  Salt‐leaching technique for the synthesis of porous poly(2,5‐benzimidazole) (ABPBI) membranes for fuel cell application , 2018 .

[76]  L. Cleemann,et al.  Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters , 2018 .

[77]  H. A. Hjuler,et al.  Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells—Effect of Humidification , 2018, Electrocatalysis.

[78]  S. Nam,et al.  Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells , 2017 .

[79]  A. Bazylak,et al.  Phosphoric Acid Invasion in High Temperature PEM Fuel Cell Gas Diffusion Layers , 2017 .

[80]  Erik Dahlquist,et al.  Complementing existing CHP plants using biomass for production of hydrogen and burning the residual gas in a CHP boiler , 2017 .

[81]  Hee-Young Park,et al.  Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells , 2017 .

[82]  Ki‐Hyun Kim,et al.  Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells , 2017 .

[83]  R. Nayak,et al.  Doped poly (2, 5-benzimidazole) membranes for high temperature polymer electrolyte fuel cell: Influence of various solvents during membrane casting on the fuel cell performance , 2017 .

[84]  Y. Devrim,et al.  Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells , 2017 .

[85]  W. Lehnert,et al.  Influence of morphology on physical properties of poly(2,5-benzimidazole) membranes , 2017 .

[86]  Zehui Yang,et al.  High performance and durability of polymer-coated Pt electrocatalyst supported on oxidized multi-walled in high-temperature polymer electrolyte fuel cells , 2017 .

[87]  Piercarlo Mustarelli,et al.  Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review , 2017, Materials.

[88]  Prakash C. Ghosh,et al.  A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell , 2017 .

[89]  A. Mendes,et al.  Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell , 2017 .

[90]  D. Lee,et al.  Cathode/anode integrated composite bipolar plate for high-temperature PEMFC , 2017 .

[91]  H. Saidi,et al.  Phosphoric acid doped polymer electrolyte membrane based on radiation grafted poly(1-vinylimidazole-co-1-vinyl-2-pyrrolidone)-g-poly(ethylene/tetrafluoroethylene) copolymer and investigation of grafting kinetics , 2017 .

[92]  M. A. Zulkifley,et al.  A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system , 2017 .

[93]  S. Shironita,et al.  Corrosion-resistant characteristics of nitrided Ni-free stainless steel for bipolar plate of polymer electrolyte fuel cell , 2017 .

[94]  D. Aili,et al.  Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole , 2017 .

[95]  S. Chirachanchai,et al.  Polymer electrolyte membrane with heterocyclic terminated poly(ethylene glycol) brushes: An approach to decorate proton conductive species on membrane surface , 2017 .

[96]  M. Rodrigo,et al.  Enhancement of Electrode Stability Using Platinum-Cobalt Nanocrystals on a Novel Composite SiCTiC Support. , 2017, ACS applied materials & interfaces.

[97]  Quan Liao,et al.  A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs) , 2017 .

[98]  Wei Li,et al.  Fabrication of Foamed Polyethersulfone–Zeolite Mixed Matrix Membranes for Polymer Electrolyte Membrane Fuel Cell Humidification , 2017 .

[99]  S. Assabumrungrat,et al.  Optimal design of different reforming processes of the actual composition of bio-oil for high-temperature PEMFC systems , 2017 .

[100]  Y. Devrim,et al.  Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells , 2017 .

[101]  Y. Devrim,et al.  Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells , 2017 .

[102]  Minjin Kim,et al.  Modeling and analysis of a 5 kWe HT-PEMFC system for residential heat and power generation , 2017 .

[103]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[104]  Limei Wang,et al.  Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane , 2017, Journal of Electronic Materials.

[105]  R. Maric,et al.  Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells , 2017 .

[106]  Kwangwon Seo,et al.  Polybenzimidazole/inorganic composite membrane with advanced performance for high temperature polymer electrolyte membrane fuel cells , 2017 .

[107]  M. Shamanian,et al.  Performance of a PEM Fuel Cell Using Electroplated Ni–Mo and Ni–Mo–P Stainless Steel Bipolar Plates , 2017 .

[108]  P. Cañizares,et al.  Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials , 2016 .

[109]  Hyejin Lee,et al.  Mesoporous ceria-silica/poly(arylene ether sulfone) composite membranes for durability of fuel cell electrolyte membrane , 2016 .

[110]  A. Mendes,et al.  The influence of impurities in high temperature polymer electrolyte membrane fuel cells performance , 2016 .

[111]  Zehui Yang,et al.  Remarkably durable platinum cluster supported on multi-walled carbon nanotubes with high performance in an anhydrous polymer electrolyte fuel cell , 2016 .

[112]  K. Sasaki,et al.  Effect of Sulfonation Level on Sulfonated Aromatic Poly(ether sulfone) Membranes as Polymer Electrolyte for High‐Temperature Polymer Electrolyte Membrane Fuel Cells , 2016 .

[113]  Chi-Yuan Lee,et al.  Persistent effect test for high temperature resistant integrated microsensor embedded in high temperature proton exchange membrane fuel cell stack , 2016 .

[114]  S. Mehdipour‐Ataei,et al.  Phosphonated polyimides: Enhancement of proton conductivity at high temperatures and low humidity , 2016 .

[115]  H. A. Hjuler,et al.  Characterization of Membrane Electrode Assemblies for High‐Temperature PEM Fuel Cells , 2016 .

[116]  Werner Lehnert,et al.  Phase Diagram Approach to Study Acid and Water Uptake of Polybenzimidazole-Type Membranes for Fuel Cells , 2016 .

[117]  Alexander Schenk,et al.  Development of Low Cost High-Temperature Polymer Electrolyte Fuel Cell Membrane-Electrode-Assemblies for Combined Heat and Power Plants in Single Family Homes , 2016 .

[118]  V. Hacker,et al.  Phosphoric Acid Tolerant Oxygen Reduction Reaction Catalysts for High-Temperature Polymer Electrolyte Fuel Cells , 2016 .

[119]  Y. Shul,et al.  High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells , 2016 .

[120]  Gino Bella,et al.  Power management of a hybrid renewable system for artificial islands: A case study , 2016 .

[121]  M. Javanbakht,et al.  Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells , 2016 .

[122]  Volker Schmidt,et al.  Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells , 2016 .

[123]  I. Eroglu,et al.  Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells , 2016 .

[124]  Hüseyin Yapıcı,et al.  The effects of temperature on transport phenomena in phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell , 2016 .

[125]  L. Jörissen,et al.  Evaluation of Electrolyte Additives for High-Temperature Polymer Electrolyte Fuel Cells , 2016 .

[126]  S. Jiang,et al.  Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C , 2016 .

[127]  J. Brouwer,et al.  Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack , 2016 .

[128]  A. Bates,et al.  An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells , 2016 .

[129]  T. Lodge,et al.  Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation. , 2016, ACS applied materials & interfaces.

[130]  M. Wark,et al.  Impact of Accelerated Stress Tests on High Temperature PEMFC Degradation , 2016 .

[131]  G. Göransson,et al.  Metallic Bipolar Plates for High Temperature Polymer Electrolyte Membrane Fuel Cells , 2016 .

[132]  T. Kondo,et al.  Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts , 2016, Science.

[133]  Werner Lehnert,et al.  Water distribution in high temperature polymer electrolyte fuel cells , 2016 .

[134]  H. Janssen,et al.  Stack Concepts for High Temperature Polymer Electrolyte Membrane Fuel Cells , 2016 .

[135]  Xin Li,et al.  Fuel Cell Application of High Temperature Polymer Electrolyte Membranes Obtained by Graft Copolymerization of Acrylic Acid and 2-Hydroxyethylmethacrylate on ETFE Backbone Material , 2016 .

[136]  F. J. Pinar,et al.  Long‐term testing of a high temperature polymer electrolyte membrane fuel cell: The effect of reactant gases , 2016 .

[137]  H. A. Hjuler,et al.  Lifetime and degradation of high temperature PEM membrane electrode assemblies , 2015 .

[138]  Xin Li,et al.  Novel concept of polymer electrolyte membranes for high-temperature fuel cells based on ETFE grafted with neutral acrylic monomers , 2015 .

[139]  N. Nakashima,et al.  Poly(vinylpyrrolidone)–wrapped carbon nanotube-based fuel cell electrocatalyst shows high durability and performance under non-humidified operation , 2015 .

[140]  Søren Knudsen Kær,et al.  Experimental investigation of carbon monoxide poisoning effect on a PBI/H3PO4 high temperature polymer electrolyte membrane fuel cell: Influence of anode humidification and carbon dioxide , 2015 .

[141]  R. P. Pandey,et al.  Phosphonic acid grafted poly(ethyleneimine)-silica composite polymer electrolyte membranes by epoxide ring opening: Improved conductivity and water retention at high temperature , 2015 .

[142]  Qingfeng Li,et al.  Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes , 2015 .

[143]  Ki‐Hyun Kim,et al.  Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions , 2015 .

[144]  Andrea Luigi Facci,et al.  Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications , 2015 .

[145]  D. Lee,et al.  Gasket-integrated carbon/silicone elastomer composite bipolar plate for high-temperature PEMFC , 2015 .

[146]  M. Rastedt,et al.  Investigation of Phosphoric Acid Distribution in PBI Based HT-PEM Fuel Cells , 2015 .

[147]  Feridun Hamdullahpur,et al.  Modeling and parametric study of a methanol reformate gas-fueled HT-PEMFC system for portable power generation applications , 2015 .

[148]  Stanislaus S. Wong,et al.  A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. , 2015, Chemical Society reviews.

[149]  Nara Tudela Haberland,et al.  Life cycle assessment of PEM FC applications: electric mobility and μ-CHP , 2015 .

[150]  T. Fujigaya,et al.  A phosphoric acid-doped electrocatalyst supported on poly(para-pyridine benzimidazole)-wrapped carbon nanotubes shows a high durability and performance , 2015 .

[151]  Søren Knudsen Kær,et al.  Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation , 2015 .

[152]  D. Gournis,et al.  Investigation of layered double hydroxide (LDH) Nafion-based nanocomposite membranes for high temperature PEFCs , 2015 .

[153]  N. Nakashima,et al.  Durable Pt Electrocatalyst Supported on a 3D Nanoporous Carbon Shows High Performance in a High-Temperature Polymer Electrolyte Fuel Cell. , 2015, ACS applied materials & interfaces.

[154]  A. Rennie,et al.  An investigation into the use of additive manufacture for the production of metallic bipolar plates for polymer electrolyte fuel cell stacks , 2015, Journal of Applied Electrochemistry.

[155]  Søren Knudsen Kær,et al.  Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells , 2015 .

[156]  B. Pollet,et al.  Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer , 2015 .

[157]  J. Jalili,et al.  Organic protic ionics based on Nitrilo(trimethylenephosphonic acid) as water-free, proton-conducting materials , 2015, Journal of Solid State Electrochemistry.

[158]  M. Maximini,et al.  Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation , 2015 .

[159]  H. Na,et al.  Dual cross-linked organic-inorganic hybrid polymer electrolyte membranes based on quaternized poly(ether ether ketone) and (3-aminopropyl)triethoxysilane , 2015 .

[160]  Amornchai Arpornwichanop,et al.  A review of the development of high temperature proton exchange membrane fuel cells , 2015 .

[161]  Søren Knudsen Kær,et al.  Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition , 2015 .

[162]  R. Zeis,et al.  Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells , 2015, Beilstein journal of nanotechnology.

[163]  D. Lee,et al.  Surface modification of carbon fiber phenolic bipolar plate for the HT-PEMFC with nano-carbon black and carbon felts , 2015 .

[164]  Marco Stampanoni,et al.  Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)distribution , 2015 .

[165]  A. Chertovich,et al.  Degradation of High Temperature Polymer Electrolyte Fuel Cell Cathode Material as Affected by Polybenzimidazole , 2015 .

[166]  Wei Zhang,et al.  Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells , 2015 .

[167]  W. Lehnert,et al.  Accelerated Degradation of High-Temperature Polymer Electrolyte Fuel Cells: Discussion and Empirical Modeling , 2015 .

[168]  Elio Jannelli,et al.  3D CFD modeling and experimental characterization of HT PEM fuel cells at different anode gas compositions , 2014 .

[169]  D. Banerjee,et al.  Phosphosilicate gel-polybenzimidazole nanocomposite novel membrane for fuel cell application , 2014, International Journal of Plastics Technology.

[170]  Dayadeep S. Monder,et al.  Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1–10 kWe , 2014 .

[171]  D. Lee,et al.  Development of carbon/PEEK composite bipolar plates with nano-conductive particles for High-Temperature PEM fuel cells (HT-PEMFCs) , 2014 .

[172]  B. Pollet,et al.  Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique , 2014 .

[173]  R. Taccani,et al.  SAXS Analysis of Catalyst Degradation in High Temperature PEM Fuel Cells Subjected to Accelerated Ageing Tests , 2014 .

[174]  C. Scheu,et al.  Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells , 2014 .

[175]  Y. Yürüm,et al.  Water Free Operated Phosphoric Acid Doped Radiation‐Grafted Proton Conducting Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells , 2014 .

[176]  B. Pollet,et al.  Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method , 2014 .

[177]  Ki‐Hyun Kim,et al.  Semi-interpenetrating network electrolyte membranes based on sulfonated poly(arylene ether sulfone) for fuel cells at high temperature and low humidity conditions , 2014 .

[178]  Inmaculada Ortiz,et al.  Progress in the use of ionic liquids as electrolyte membranes in fuel cells , 2014 .

[179]  D. Aili,et al.  Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells , 2014 .

[180]  E. Cho,et al.  meta-PBI/methylated PBI-OO blend membranes for acid doped HT PEMFC , 2014 .

[181]  Qinghui Hu,et al.  Investigation of stamping process of metallic bipolar plates in PEM fuel cell—Numerical simulation and experiments , 2014 .

[182]  M. Rastedt,et al.  Impact of Load Cycling at High Current Densities on the Degradation Behavior of Membrane-Electrode-Assemblies , 2014 .

[183]  Kazunari Sasaki,et al.  Investigation of Performance and Durability of MEAs at Higher Temperature , 2014 .

[184]  T. Fujigaya,et al.  Design of Highly Durable Electrocatalyst for High-Temperature Polymer Electrolyte Fuel Cell , 2014 .

[185]  H. Na,et al.  Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells , 2014 .

[186]  E. Quartarone,et al.  Polysulfonated Fluoro‐oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H3PO4 Doping Levels , 2014 .

[187]  Erik Kjeang,et al.  Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells , 2014 .

[188]  I. Manke,et al.  Evaluation of structural changes of HT-PEFC electrodes from in-situ Synchrotron X-ray radiographs , 2014 .

[189]  Ling He,et al.  Preliminary design of a small-scale system for the conversion of biogas to electricity by HT-PEM fuel cell , 2014 .

[190]  Lei Zhang,et al.  Experimental identification of the active sites in pyrolyzed carbon-supported cobalt–polypyrrole–4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction , 2014 .

[191]  T. Morawietz,et al.  Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes , 2014 .

[192]  Anurag Prakash Sunda,et al.  Polymer chain length, phosphoric acid doping and temperature dependence on structure and dynamics of an ABPBI [poly(2,5-benzimidazole)] polymer electrolyte membrane , 2014 .

[193]  Yurong Ren,et al.  Phosphoric acid doped polybenzimidazole/imidazolium-modified silsesquioxane hybrid proton conducting membranes for anhydrous proton exchange membrane application , 2014 .

[194]  Avijit Ghosh,et al.  Carbon‐Polymer Composite Bipolar Plate for HT‐PEMFC , 2014 .

[195]  D. Aili,et al.  Poly(imide benzimidazole)s for high temperature polymer electrolyte membrane fuel cells , 2014 .

[196]  Suresh G. Advani,et al.  Mechanical Stability of H3PO4-Doped PBI/Hydrophilic-Pretreated PTFE Membranes for High Temperature PEMFCs , 2014 .

[197]  H. Ju,et al.  Numerical study of thermal stresses in high-temperature proton exchange membrane fuel cell (HT-PEMFC) , 2014 .

[198]  G. Jung,et al.  Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique , 2014 .

[199]  H. Ploehn,et al.  High Polymer Content 2,5‐Pyridine‐Polybenzimidazole Copolymer Membranes with Improved Compressive Properties , 2014 .

[200]  M. Koç,et al.  Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates , 2014 .

[201]  S. Dharmalingam,et al.  An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium , 2014 .

[202]  Dukjoon Kim,et al.  Sulfonated mesoporous benzene-silica-embedded sulfonated poly(ether ether ketone) membranes for enhanced proton conduction and anti-dehydration , 2014 .

[203]  P. Ghosh,et al.  Contact resistance between bipolar plate and gas diffusion layer in high temperature polymer electrolyte fuel cells , 2014 .

[204]  P. Ghosh,et al.  Three Dimensional Computational Fluid Dynamics Modelling of High Temperature Polymer Electrolyte Fuel Cell , 2014 .

[205]  L. Gubler,et al.  Second Cycle Is Dead: Advanced Electrode Diagnostics for High-Temperature Polymer Electrolyte Fuel Cells , 2014 .

[206]  Arun Pandy,et al.  A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell , 2014, 1401.4285.

[207]  X. Li,et al.  Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs) , 2013 .

[208]  Y. Yoon,et al.  Properties of Sulfonated Poly(Arylene Ether Sulfone)/Functionalized Carbon Nanotube Composite Membrane for High Temperature PEMFCs , 2013 .

[209]  Werner Lehnert,et al.  Design and Experimental Investigation of a Heat Pipe Supported External Cooling System for HT-PEFC Stacks , 2013 .

[210]  X. Li,et al.  Synthesis and Characterization of a New Fluorine‐Containing Polybenzimidazole (PBI) for Proton‐Conducting Membranes in Fuel Cells , 2013 .

[211]  M. Mench,et al.  Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field , 2013 .

[212]  Amornchai Arpornwichanop,et al.  Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications , 2013 .

[213]  K. Wippermann,et al.  A Comprehensive Corrosion Study on Metallic Materials for HT-PEFC Application , 2013 .

[214]  O. Barbera,et al.  1.5 kWe HT-PEFC stack with composite MEA for CHP application , 2013 .

[215]  A. Prasad,et al.  PBI/Nafion/SiO2 hybrid membrane for high-temperature low-humidity fuel cell applications , 2013 .

[216]  Shubo Wang,et al.  Fabrication and electrochemical performance of Poly (2,5-benzimidazole) (ABPBI)-based MEA by catalyst coated membrane (CCM) method for high-temperature polymer electrolyte fuel cells , 2013 .

[217]  F. J. Pinar,et al.  Effect of compression on the performance of a HT-PEM fuel cell , 2013, Journal of Applied Electrochemistry.

[218]  S. Grigoriev,et al.  Numerical optimization of bipolar plates and gas diffusion electrodes for PBI-based PEM fuel cells , 2013 .

[219]  M. Mizuhata,et al.  Membrane modification by liquid phase deposition using small amount of TiO2 for high-temperature operation of polymer electrolyte fuel cells , 2013 .

[220]  Dong Min Kim,et al.  Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs) , 2013 .

[221]  S. Mehdipour‐Ataei,et al.  Preparation and properties of novel sulfonated poly(arylene ether ketone) random copolymers for polymer electrolyte membrane fuel cells , 2013 .

[222]  Waldemar Bujalski,et al.  High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review , 2013 .

[223]  D. Stolten,et al.  Development of HT-PEFC stacks in the kW range , 2013 .

[224]  Chaoyang Wang,et al.  Use of polypyrrole in catalysts for low temperature fuel cells , 2013 .

[225]  H. Missan,et al.  Sulfonated-Nanocomposites Incorporated Polybenzimidazole Based Polymer Electrolyte Membranes for Fuel Cells , 2013 .

[226]  J. Lee,et al.  Sulfonated poly(arylene ether sulfone)/sulfonated zeolite composite membrane for high temperature proton exchange membrane fuel cells , 2013 .

[227]  Jin-Soo Park,et al.  A study on sulfonated poly(arylene ether sulfone) membranes containing two different types of SiO2 for a high temperature and low-humidified polymer electrolyte fuel cell , 2013, Korean Journal of Chemical Engineering.

[228]  D. Aili,et al.  Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications. , 2013, ChemSusChem.

[229]  Y. Truong,et al.  SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells , 2013, Journal of Materials Science.

[230]  M. G. Jung,et al.  Metallic Bipolar Plate Fabrication Process of Fuel Cell by Rubber Pad Forming and its Performance Evaluation , 2013 .

[231]  Whangi Kim,et al.  Phosphoric acid doped sulfonated poly(tetra phenyl isoquinoline ether sulfone) copolymers for high temperature proton exchange membrane potential application , 2013 .

[232]  K. Wippermann,et al.  Effect of Spiral Flow Field Design on Performance and Durability of HT-PEFCs , 2013 .

[233]  Y. Hong,et al.  Sulfonated poly(arylene ether sulfone)/disulfonated silsesquioxane hybrid proton conductors for proton exchange membrane fuel cell application , 2012 .

[234]  Sukkee Um,et al.  An engineering approach to optimal metallic bipolar plate designs reflecting gas diffusion layer compression effects , 2012 .

[235]  Frano Barbir,et al.  PEM Fuel Cells: Theory and Practice , 2012 .

[236]  Jifu Zheng,et al.  Synthesis and characterization of a novel poly(arylene ether sulfone) containing pendent imidazole groups for high temperature proton exchange membranes , 2012 .

[237]  Ho‐Young Jung,et al.  Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC) , 2012 .

[238]  Werner Lehnert,et al.  3D modeling of an HT-PEFC stack using reformate gas , 2012 .

[239]  N. Kim,et al.  Poly(2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell , 2012 .

[240]  Suk Woo Nam,et al.  Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition , 2012 .

[241]  Deborah J. Jones,et al.  Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells , 2012 .

[242]  Sang Young Lee,et al.  Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells , 2012 .

[243]  Jian‐mei Lu,et al.  Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application , 2012 .

[244]  K. Scott,et al.  A H2SO4 Loaded Polybenzimidazole (PBI) Membrane for High Temperature PEMFC , 2012 .

[245]  Yan-Jie Wang,et al.  Carbon–Nb0.07Ti0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction , 2012 .

[246]  Ping Li,et al.  Preparation of thermostable electroconductive composite plates from expanded graphite and polyimide , 2012 .

[247]  A. Venkatnathan,et al.  Molecular dynamics simulation of phosphoric acid doped monomer of polybenzimidazole: a potential component polymer electrolyte membrane of fuel cell. , 2012, The journal of physical chemistry. B.

[248]  Huan Yang,et al.  Physically stable proton exchange membrane with ordered electrolyte for elevated temperature PEM fuel cell , 2012 .

[249]  O. Barbera,et al.  Stack Operation Using Composite Membrane-Electrodes Assemblies at 120Â °C , 2012 .

[250]  Kyoung Hwan Choi,et al.  Improvement of activity for oxygen reduction reaction by decoration of Ir on PdCu/C catalyst , 2012 .

[251]  Weimin Zhu,et al.  Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells , 2012 .

[252]  S. Kær,et al.  Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery , 2012 .

[253]  Tae-Hyun Kim,et al.  Azide-assisted terminal crosslinking of ionomeric blocks: Effects on morphology and proton conductivity , 2012 .

[254]  M. Xiao,et al.  Portable PEMFC stack using sulfonated poly (fluorenyl ether ketone) ionomer as membrane , 2012 .

[255]  Frederik C. Krebs,et al.  Roll-to-roll coated PBI membranes for high temperature PEM fuel cells , 2012 .

[256]  Hongwei Zhang,et al.  Advances in the high performance polymer electrolyte membranes for fuel cells. , 2012, Chemical Society reviews.

[257]  A. Ignaszak,et al.  Nanocrystalline tungsten carbide (WC) synthesis/characterization and its possible application as a PEM fuel cell catalyst support , 2012 .

[258]  P. Cañizares,et al.  Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount , 2012 .

[259]  V. Deimede,et al.  Side chain crosslinking of aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications , 2012 .

[260]  B. Benicewicz,et al.  A new sequence isomer of AB‐polybenzimidazole for high‐temperature PEM fuel cells , 2012 .

[261]  D. Chang,et al.  The fabrication of high-aspect-ratio micro-flow channels on metallic bipolar plates using die-sinking micro-electrical discharge machining , 2012 .

[262]  M. Pan,et al.  Effects of casting solvent on microstructrue and ionic conductivity of anhydrous sulfonated poly(ether ether ketone)-inoic liquid composite membranes , 2012 .

[263]  J. Jensen,et al.  Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells , 2011 .

[264]  M. Pina,et al.  Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high t , 2011 .

[265]  P. Cañizares,et al.  Promising TiOSO₄ composite polybenzimidazole-based membranes for high temperature PEMFCs. , 2011, ChemSusChem.

[266]  P. Ghosh,et al.  Modelling of start-up time for high temperature polymer electrolyte fuel cells , 2011 .

[267]  Jian‐mei Lu,et al.  Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange m , 2011 .

[268]  Muammer Koç,et al.  Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates i , 2011 .

[269]  S. Neophytides,et al.  Preparation and characterization of Pt on modified multi-wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications , 2011 .

[270]  Adélio Mendes,et al.  A dynamic model for high temperature polymer electrolyte membrane fuel cells , 2011 .

[271]  G. Ranieri,et al.  Effective improvement of water-retention in nanocomposite membranes using novel organo-modified clays as fillers for high temperature PEMFCs. , 2011, The journal of physical chemistry. B.

[272]  S. Nam,et al.  Sulfonated poly(ether sulfone)-based silica nanocomposite membranes for high temperature polymer electrolyte fuel cell applications , 2011 .

[273]  E. Quartarone,et al.  Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs , 2011 .

[274]  J. Kallitsis,et al.  Cross-Linking of Side Chain Unsaturated Aromatic Polyethers for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications , 2011 .

[275]  P. Cañizares,et al.  Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole , 2011 .

[276]  Christoph Hartnig,et al.  On a new degradation mode for high-temperature polymer electrolyte fuel cells: How bipolar plate degradation affects cell performance , 2011 .

[277]  Dukjoon Kim,et al.  Sulfonated poly(ether ether ketone) electrolyte membranes cross-linked with 4,4′-diaminodiphenyl ether , 2011 .

[278]  Søren Knudsen Kær,et al.  Boundary model-based reference control of blower cooled high temperature polymer electrolyte membran , 2011 .

[279]  Brian C. Benicewicz,et al.  Synthesis and Properties of Segmented Block Copolymers of Functionalised Polybenzimidazoles for High‐Temperature PEM Fuel Cells , 2011 .

[280]  Kyle J. Lange,et al.  Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: Effects of water vapor and temperature , 2011 .

[281]  B. P. Tripathi,et al.  Highly stable aprotic ionic-liquid doped anhydrous proton-conducting polymer electrolyte membrane for high-temperature applications , 2011 .

[282]  W. Yoon,et al.  Preparation of MEA with the Polybenzimidazole Membrane for High Temperature PEM Fuel Cell , 2011 .

[283]  Pan Mu,et al.  Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells , 2011 .

[284]  P. Cañizares,et al.  A novel titanium PBI-based composite membrane for high temperature PEMFCs , 2011 .

[285]  C. Siegel,et al.  Systematic characterization of a PBI/H 3PO 4 solgel membraneModeling and simulation , 2011 .

[286]  Jung-Chung Hung,et al.  Studies on the fabrication of metallic bipolar plates—Using micro electrical discharge machining milling , 2011 .

[287]  K. Scott,et al.  A polytetrafluoroethylene/quaternized polysulfone membrane for high temperature polymer electrolyte membrane fuel cells , 2011 .

[288]  Søren Knudsen Kær,et al.  Modeling and off-design performance of a 1kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households , 2011 .

[289]  M. Mathe,et al.  Enhanced conductivity and stability of composite membranes based on poly (2,5-benzimidazole) and zir , 2011 .

[290]  Lin Hua,et al.  Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates , 2010 .

[291]  Kanthi Latha Bhamidipati,et al.  Numerical Simulation of a High Temperature Polymer Electrolyte Membrane Fabrication Process , 2010 .

[292]  T. Lim,et al.  Performance degradation and microstructure changes in freeze–thaw cycling for PEMFC MEAs with various initial microstructures , 2010 .

[293]  Y. Maekawa,et al.  Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cells , 2010 .

[294]  Zhuguo Li,et al.  Nitrogen plasma-implanted titanium as bipolar plates in polymer electrolyte membrane fuel cells , 2010 .

[295]  Y. Shul,et al.  Preparation and Characterisation of Non‐aqueous Proton‐Conducting Membranes with the Low Content of Ionic Liquids , 2010 .

[296]  H. Zhang,et al.  Properties of Polymer Electrolyte Membranes Based on Poly(Aryl Ether Benzimidazole) and Sulphonated Poly(Aryl Ether Benzimidazole) for High Temperature PEMFCs , 2010 .

[297]  V. Antonucci,et al.  Surface Properties of Pt and PtCo Electrocatalysts and Their Influence on the Performance and Degradation of High-Temperature Polymer Electrolyte Fuel Cells , 2010 .

[298]  Muammer Koç,et al.  Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates , 2010 .

[299]  Fuqiang Liu,et al.  Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer , 2010 .

[300]  Lin Hua,et al.  Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming , 2010 .

[301]  Jun Ni,et al.  Fabrication of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cell by Flexible Forming Process-Numerical Simulations and Experiments , 2010 .

[302]  L. Petrik,et al.  Preparation and characterisation of porous poly(2,5benzimidazole) (ABPBI) membranes using surfactants as templates for polymer electrolyte membrane fuel cells , 2010 .

[303]  J. Scholta,et al.  Long‐Term Testing in Dynamic Mode of HT‐PEMFC H3PO4/PBI Celtec‐P Based Membrane Electrode Assemblies for Micro‐CHP Applications , 2010 .

[304]  Zongping Shao,et al.  Fabrication and evolution of catalyst-coated membranes by direct spray deposition of catalyst ink onto Nafion membrane at high temperature , 2010 .

[305]  Sreekumar Kurungot,et al.  Pt–MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature Polymer Electrolyte Membrane Fuel Cell applications , 2010 .

[306]  Enrico Drioli,et al.  Preparation and characterization of new non-fluorinated polymeric and composite membranes for PEMFCs , 2010 .

[307]  K. Scott,et al.  A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications , 2010 .

[308]  Tequila A. L. Harris,et al.  Manufacturing of High-Temperature Polymer Electrolyte Membranes—Part I: System Design and Modeling , 2010 .

[309]  Chaoyang Wang,et al.  Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped co-PPy/C as cathode electrocatalyst. , 2010, Journal of the American Chemical Society.

[310]  Jian‐mei Lu,et al.  Protic Ionic Liquid-Based Hybrid Proton-Conducting Membranes for Anhydrous Proton Exchange Membrane Application , 2010 .

[311]  T. Okada,et al.  Alkali doped poly(vinyl alcohol) for potential fuel cell applications , 2010 .

[312]  Joannis K. Kallitsis,et al.  Polymer electrolyte membranes for high-temperature fuel cells based on aromatic polyethers bearing pyridine units , 2009 .

[313]  M. Wilhelm,et al.  Polysiloxane Based Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFC) , 2009 .

[314]  M. Inaba Durability of Electrocatalysts in Polymer Electrolyte Fuel Cells , 2009 .

[315]  Muammer Koç,et al.  PEMFC Metallic Bipolar Plates: Effect of Manufacturing Method on Corrosion Resistance , 2009 .

[316]  G. Qian,et al.  Synthesis and characterization of high molecular weight hexafluoroisopropylidene‐containing polybenzimidazole for high‐temperature polymer electrolyte membrane fuel cells , 2009 .

[317]  B. Benicewicz,et al.  Synthesis of Poly (2,2′‐(1,4‐phenylene) 5,5′‐bibenzimidazole) (para‐PBI) and Phosphoric Acid Doped Membrane for Fuel Cells , 2009 .

[318]  Dennis W. Smith,et al.  Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells , 2009 .

[319]  Werner Lehnert,et al.  Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers , 2009 .

[320]  Silvia Curteanu,et al.  The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature , 2009 .

[321]  Adam Hawkes,et al.  Fuel cells for micro-combined heat and power generation , 2009 .

[322]  Tae-Hyun Kim,et al.  Development of Crosslinked Sulfonated Poly(ether sulfone)s as Novel Polymer Electrolyte Membranes , 2009 .

[323]  M. Xiao,et al.  The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells , 2009 .

[324]  Aimy Bazylak,et al.  Liquid water visualization in PEM fuel cells: A review , 2009 .

[325]  Pierluigi Mancarella,et al.  Distributed multi-generation: A comprehensive view , 2009 .

[326]  Xingwang Zhang,et al.  Enhanced Proton Conduction in Polymer Electrolyte Membranes as Synthesized by Polymerization of Protic Ionic Liquid-Based Microemulsions , 2009 .

[327]  T. Yamaguchi,et al.  Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane. , 2009, The journal of physical chemistry. B.

[328]  Yan Yin,et al.  Synthesis and characterization of sulfonated polyimides derived from 2,2′-bis(4-sulfophenyl)-4,4′-oxydianiline as polymer electrolyte membranes for fuel cell applications , 2009 .

[329]  T. L. Dhami,et al.  Influence of Expanded Graphite Particle Size on the Properties of Composite Bipolar Plates for Fuel Cell Application , 2009 .

[330]  J. Kallitsis,et al.  The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends , 2009 .

[331]  Detlef Stolten,et al.  Materials, manufacturing technology and costs of fuel cell membranes☆ , 2010 .

[332]  Chi-Yuan Lee,et al.  Simulation and fabrication of micro-scaled flow channels for metallic bipolar plates by the electrochemical micro-machining process , 2008 .

[333]  J. Lawrence,et al.  The degradation mechanism of sulfonated poly(arylene ether sulfone)s in an oxidative environment , 2008 .

[334]  Søren Knudsen Kær,et al.  Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks , 2008 .

[335]  F. Müller-Plathe,et al.  Ab Initio Calculations of the Condensation of Phosphonic Acid and Methylphosphonic Acid: Chemical Properties of Potential Electrolyte Materials for Fuel Cell Applications , 2008 .

[336]  B. Scrosati,et al.  Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane , 2008 .

[337]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[338]  J. Kallitsis,et al.  New High Temperature Polymer Electrolyte Membranes. Influence of the Chemical Structure on their Properties , 2008 .

[339]  M. Boaventura,et al.  Proton Conducting Membranes Based on Benzimidazole Sulfonic Acid Doped Sulfonated Poly(Oxadiazole–Triazole) Copolymer for Low Humidity Operation , 2008 .

[340]  F. Müller-Plathe,et al.  Molecular dynamics simulations of heptyl phosphonic acid: a potential polymer component for fuel cell polymer membrane. , 2008, The journal of physical chemistry. B.

[341]  In-Hwan Oh,et al.  High temperature operation of PEMFC: A novel approach using MEA with silica in catalyst layer , 2008 .

[342]  Junliang Zhang,et al.  Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. , 2007, The journal of physical chemistry. A.

[343]  Pablo Cañizares,et al.  Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC , 2007 .

[344]  Nick Kelly,et al.  Specifications for modelling fuel cell and combustion-based residential cogeneration device within whole-building simulation programs , 2007 .

[345]  Jianlu Zhang,et al.  Single PEMFC Design and Validation for High-Temperature MEA Testing and Diagnosis up to 300 ° C , 2007 .

[346]  T. Reitz,et al.  Polyarylenethioethersulfone Membranes for Fuel Cells , 2007 .

[347]  B. Scrosati,et al.  New, high temperature superacid zirconia-doped Nafion™ composite membranes , 2007 .

[348]  San Ping Jiang,et al.  Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells , 2007 .

[349]  Bruno Scrosati,et al.  New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[350]  Robert B. Moore,et al.  Glass transition temperature of perfluorosulfonic acid ionomers , 2007 .

[351]  Yong-Gun Shul,et al.  Preparation of Pt/zeolite–Nafion composite membranes for self-humidifying polymer electrolyte fuel cells , 2007 .

[352]  E. Higuchi,et al.  Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. , 2007, Journal of the American Chemical Society.

[353]  Emanuel Peled,et al.  PTFE-Based Solid Polymer Electrolyte Membrane for High-Temperature Fuel Cell Applications , 2007 .

[354]  F. C. Fonseca,et al.  Performance of Nafion-TiO2 Hybrids Produced by Sol-Gel Process as Electrolyte for PEMFC Operating at High Temperatures. , 2007 .

[355]  Jie Peng,et al.  Numerical simulation of proton exchange membrane fuel cells at high operating temperature , 2006 .

[356]  V. I. Ugursal,et al.  Residential cogeneration systems: Review of the current technology , 2006 .

[357]  P. Cañizares,et al.  Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs , 2006 .

[358]  Minghua Wang,et al.  Development of a kilowatt class PEMFC stack using Au-coated LF11 Al alloy bipolar plates , 2006 .

[359]  M. Rodrigo,et al.  Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells , 2006 .

[360]  Tequila A. L. Harris,et al.  DEVELOPMENT OF A CASTING TECHNIQUE FOR MEMBRANE MATERIAL USED IN HIGH-TEMPERATURE PEM FUEL CELLS , 2006 .

[361]  Nora Gourdoupi,et al.  Novel Polymer Electrolyte Membrane, Based on Pyridine Containing Poly(ether sulfone), for Application in High‐Temperature Fuel Cells , 2005 .

[362]  Ching-Han Huang,et al.  Electroforming of metallic bipolar plates with micro-featured flow field , 2005 .

[363]  Pedro Gómez-Romero,et al.  Recent Developments on Proton Conduc‐ting Poly(2,5‐benzimidazole) (ABPBI) Membranes for High Temperature Poly‐mer Electrolyte Membrane Fuel Cells , 2005 .

[364]  K. Miyatake,et al.  Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications , 2005 .

[365]  J. Kallitsis,et al.  Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units , 2005 .

[366]  Brian C. Benicewicz,et al.  Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications , 2005 .

[367]  Vijay Ramani,et al.  Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation , 2005 .

[368]  Chang-Soo Kim,et al.  Polymer composite membrane incorporated with a hygroscopic material for high-temperature PEMFC , 2004 .

[369]  Ho-jin Kweon,et al.  Polybenzimidazoles for High Temperature Fuel Cell Applications , 2004 .

[370]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[371]  Keith Wipke,et al.  MODEL SELECTION CRITERIA , 2022 .

[372]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[373]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[374]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[375]  P. Gómez‐Romero,et al.  Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells , 2003 .

[376]  K. Yoon,et al.  Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell , 2003 .

[377]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[378]  Ryosuke Jinnouchi,et al.  NEW INSIGHT INTO MICROSCALE TRANSPORT PHENOMENA IN PEFC BY QUANTUM MD , 2003 .

[379]  Hongtan Liu,et al.  A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model , 2001 .

[380]  C. Kontoyannis,et al.  Development and Characterization of Acid-Doped Polybenzimidazole/Sulfonated Polysulfone Blend Polymer Electrolytes for Fuel Cells , 2001 .

[381]  Yann Bultel,et al.  Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion , 2001 .

[382]  Patrick Bertrand,et al.  O-2 reduction in PEM fuel cells: Activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors , 2000 .

[383]  T. Nguyen,et al.  Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields , 2000 .

[384]  K. Kubo,et al.  Proton conducting behavior in non-crosslinked and crosslinked polyethylenimine with excess phosphoric acid , 2000 .

[385]  J. R. Stevens,et al.  Proton conducting gel/H3PO4 electrolytes , 1997 .

[386]  T. Fuller,et al.  Water and Thermal Management in Solid‐Polymer‐Electrolyte Fuel Cells , 1993 .

[387]  J. Zupancic,et al.  Proton conducting interpenetrating polymer networks , 1988 .

[388]  P. Donoso NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x) , 1988 .