14.4 All-Digital Time-Domain CNN Engine Using Bidirectional Memory Delay Lines for Energy-Efficient Edge Computing
暂无分享,去创建一个
Jaydeep P. Kulkarni | Aseem Sayal | Shirin Fathima | S. S. Teja Nibhanupudi | J. Kulkarni | Aseem Sayal | S. T. Nibhanupudi | Shirin Fathima | Jaydeep P. Kulkarni
[1] Chris H. Kim,et al. A scalable time-based integrate-and-fire neuromorphic core with brain-inspired leak and local lateral inhibition capabilities , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).
[2] Sujan Kumar Gonugondla,et al. A 42pJ/decision 3.12TOPS/W robust in-memory machine learning classifier with on-chip training , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).
[3] Arijit Raychowdhury,et al. A 55nm time-domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro-robots , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).
[4] Marian Verhelst,et al. A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).
[5] Jun-Seok Park,et al. 14.6 A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE systems , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).
[6] SeongHwan Cho,et al. A 9 bit, 1.12 ps Resolution 2.5 b/Stage Pipelined Time-to-Digital Converter in 65 nm CMOS Using Time-Register , 2014, IEEE Journal of Solid-State Circuits.
[7] Anantha Chandrakasan,et al. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).