A Generalization of the {\L}o\'s-Tarski Preservation Theorem - Dissertation Summary

Abstract We present new parameterized preservation properties that provide for each natural number k, semantic characterizations of the ∃ k ∀ ⁎ and ∀ k ∃ ⁎ prefix classes of first order logic sentences, over the class of all structures and for arbitrary finite vocabularies. These properties, that we call preservation under substructures modulo k-cruxes and preservation under k-ary covered extensions respectively, correspond exactly to the classical properties of preservation under substructures and preservation under extensions, when k equals 0. As a consequence, we get a parameterized generalization of the Łoś–Tarski preservation theorem for sentences, in both its substructural and extensional forms. We call our characterizations collectively the generalized Łoś–Tarski theorem for sentences. We generalize this theorem to theories, by showing that theories that are preserved under k-ary covered extensions are characterized by theories of ∀ k ∃ ⁎ sentences, and theories that are preserved under substructures modulo k-cruxes, are equivalent, under a well-motivated model-theoretic hypothesis, to theories of ∃ k ∀ ⁎ sentences. In contrast to existing preservation properties in the literature that characterize the Σ 2 0 and Π 2 0 prefix classes of FO sentences, our preservation properties are combinatorial and finitary in nature, and stay non-trivial over finite structures as well.

[1]  Jean Goubault-Larrecq,et al.  Well Quasi-Orders in Computer Science (Dagstuhl Seminar 16031) , 2016, Dagstuhl Reports.

[2]  Stephan Kreutzer,et al.  Model Theory Makes Formulas Large , 2007, ICALP.

[3]  Detlef Seese,et al.  Linear time computable problems and first-order descriptions , 1996, Mathematical Structures in Computer Science.

[4]  Gabriel M. Kuper,et al.  Query answering over contextualized RDF/OWL knowledge with forall-existential bridge rules: Decidable finite extension classes , 2014, Semantic Web.

[5]  Phokion G. Kolaitis,et al.  On preservation under homomorphisms and unions of conjunctive queries , 2004, PODS '04.

[6]  Supratik Chakraborty,et al.  On Semantic Generalizations of the Bernays-Schönfinkel-Ramsey Class with Finite or Co-finite Spectra , 2010, ArXiv.

[7]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[8]  Nutan Limaye,et al.  Using Preservation Theorems for Inexpressibility Results in First Order Logic , 2012 .

[9]  Sebastian Rudolph,et al.  Extending Decidable Existential Rules by Joining Acyclicity and Guardedness , 2011, IJCAI.

[10]  Andrea Calì,et al.  New Expressive Languages for Ontological Query Answering , 2011, AAAI.

[11]  David Duris,et al.  Extension Preservation Theorems on Classes of Acyclic Finite Structures , 2010, SIAM J. Comput..

[12]  Nikolaj Bjørner,et al.  Deciding Effectively Propositional Logic Using DPLL and Substitution Sets , 2008, IJCAR.

[13]  William W. Tait,et al.  A counterexample to a conjecture of Scott and Suppes , 1959, Journal of Symbolic Logic.

[14]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[15]  Stephan Kreutzer,et al.  First-Order Interpretations of Bounded Expansion Classes , 2018, ICALP.

[16]  Robert Ganian,et al.  When Trees Grow Low: Shrubs and Fast MSO1 , 2012, International Symposium on Mathematical Foundations of Computer Science.

[17]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[18]  Eric Rosen Finite model theory and finite variable logics , 1996 .

[19]  Yuri Gurevich,et al.  Datalog vs. first-order logic , 1989, 30th Annual Symposium on Foundations of Computer Science.

[20]  Gabriel M. Kuper,et al.  Query Answering over Contextualized RDF/OWL Knowledge with Forall‐Existential Bridge Rules: Attaining Decidability Using Acyclicity , 2022 .

[21]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[22]  Stephan Kreutzer,et al.  Deciding first-order properties of nowhere dense graphs , 2013, STOC.

[23]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[24]  Jeremy Avigad,et al.  The birth of model theory: Lowenheim’s theorem in the frame of the theory of relatives , 2006 .

[25]  Jakub Gajarský,et al.  Kernelizing MSO Properties of Trees of Fixed Height, and Some Consequences , 2012, Log. Methods Comput. Sci..

[26]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[27]  Eric Rosen,et al.  Some Aspects of Model Theory and Finite Structures , 2002, Bulletin of Symbolic Logic.

[28]  Jakub Gajarský,et al.  Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences , 2012, FSTTCS.

[29]  Stephan Kreutzer,et al.  Domination Problems in Nowhere-Dense Classes , 2009, FSTTCS.

[30]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[31]  Robin Thomas,et al.  Deciding First-Order Properties for Sparse Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[32]  Pascal Fontaine Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class , 2007, VERIFY.

[33]  Eric Rosen,et al.  Modal Logic over Finite Structures , 1997, J. Log. Lang. Inf..

[34]  H. Keisler Model theory for infinitary logic , 1971 .

[35]  V. Rich Personal communication , 1989, Nature.

[36]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[37]  Barkley Rosser Review: A. Malcev, Untersuchungen aus dem Gebiete der Mathematischen Logik , 1937 .

[38]  Jaroslav Nesetril,et al.  The core of a graph , 1992, Discret. Math..

[39]  M. S. Ramanujan,et al.  A New Perspective on FO Model Checking of Dense Graph Classes , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[40]  Kyoto University,et al.  Model Checking Lower Bounds for Simple Graphs , 2013, 1302.4266.

[41]  Anuj Dawar,et al.  Preservation Under Extensions on Well-Behaved Finite Structures , 2005, ICALP.

[42]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[43]  Supratik Chakraborty,et al.  Generalizations of the Los-Tarski Preservation Theorem , 2013, ArXiv.

[44]  E. C. Milner Basic WQO- and BQO-Theory , 1985 .

[45]  Scott Weinstein,et al.  Preservation Theorems in Finite Model Theory , 1994, LCC.

[46]  Supratik Chakraborty,et al.  A Generalization of the Łoś-Tarski Preservation Theorem over Classes of Finite Structures , 2014, MFCS.

[47]  Jakub Gajarský,et al.  Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.

[48]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[49]  Alexei P. Stolboushkin Finitely monotone properties , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[50]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[51]  Benjamin Rossman,et al.  Homomorphism preservation theorems , 2008, JACM.

[52]  H. Jerome Keisler,et al.  Theory of Models with Generalized Atomic Formulas , 1960, J. Symb. Log..

[53]  Sumit Gulwani,et al.  Program verification using templates over predicate abstraction , 2009, PLDI '09.

[54]  Ronald Fagin,et al.  Data exchange: semantics and query answering , 2005, Theor. Comput. Sci..

[55]  Anuj Dawar,et al.  Homomorphism Preservation on Quasi-Wide Classes , 2008, J. Comput. Syst. Sci..

[56]  Erich Grädel,et al.  On Preservation Theorems for Two‐Variable Logic , 1999, Math. Log. Q..

[57]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[59]  H. Jerome Keisler Finite Approximations of Infinitely Long Formulas , 2014 .

[60]  Petr Hliněný,et al.  FO Model Checking on Posets of Bounded Width , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[61]  Sumit Gulwani,et al.  Dimensions in program synthesis , 2010, Formal Methods in Computer Aided Design.

[62]  Vadim V. Lozin,et al.  Well-quasi-ordering versus clique-width , 2017, J. Comb. Theory, Ser. B.

[63]  Frederik Harwath,et al.  Preservation and decomposition theorems for bounded degree structures , 2014, Log. Methods Comput. Sci..

[64]  Martin Grohe Some Remarks on Finite Löwenheim-Skolem Theorems , 1996, Math. Log. Q..

[65]  Abhisekh Sankaran,et al.  A Finitary Analogue of the Downward Löwenheim-Skolem Property , 2017, CSL.

[66]  Supratik Chakraborty,et al.  Preservation under Substructures modulo Bounded Cores , 2012, WoLLIC.

[67]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..