Attitudinal Choquet integrals and applications in decision making

The compensation capabilities of Choquet integral are augmented to consider the complex attitudinal character of a decision maker. The resulting operator is termed as attitudinal Choquet integral (ACI). The proposed ACI is further extended as induced ACI. The special cases of ACI are investigated. The usefulness of ACI is shown through a case study.

[1]  R. Yager Connectives and quantifiers in fuzzy sets , 1991 .

[2]  H. Zimmermann,et al.  On the suitability of minimum and product operators for the intersection of fuzzy sets , 1979 .

[3]  Radko Mesiar,et al.  Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes , 2011, Inf. Sci..

[4]  Ronald R. Yager,et al.  Generalized OWA Aggregation Operators , 2004, Fuzzy Optim. Decis. Mak..

[5]  Zeshui Xu,et al.  Choquet integrals of weighted intuitionistic fuzzy information , 2010, Inf. Sci..

[6]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[7]  Joonwhoan Lee,et al.  Fuzzy-connective-based hierarchical aggregation networks for decision making , 1992 .

[8]  M. K. Luhandjula Compensatory operators in fuzzy linear programming with multiple objectives , 1982 .

[9]  Ying-Ming Wang,et al.  A preemptive goal programming method for aggregating OWA operator weights in group decision making , 2007, Inf. Sci..

[10]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[11]  Radko Mesiar,et al.  Discrete Choquet integral and some of its symmetric extensions , 2011, Fuzzy Sets Syst..

[12]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[14]  José M. Merigó,et al.  THE FUZZY GENERALIZED OWA OPERATOR AND ITS APPLICATION IN STRATEGIC DECISION MAKING , 2010, Cybern. Syst..

[15]  Vicenç Torra,et al.  The $h$-Index and the Number of Citations: Two Fuzzy Integrals , 2008, IEEE Transactions on Fuzzy Systems.

[16]  Ta-Chun Wen,et al.  A novel efficient approach for DFMEA combining 2-tuple and the OWA operator , 2010, Expert Syst. Appl..

[17]  J. Merigó,et al.  The Induced Generalized OWA Operator , 2009, EUSFLAT Conf..

[18]  Sung-Bae Cho,et al.  Fuzzy aggregation of modular neural networks with ordered weighted averaging operators , 1995, Int. J. Approx. Reason..

[19]  Xiaohong Chen,et al.  Induced choquet ordered averaging operator and its application to group decision making , 2010, Int. J. Intell. Syst..

[20]  Divakaran Liginlal,et al.  On policy capturing with fuzzy measures , 2005, Eur. J. Oper. Res..

[21]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[22]  Ronald R. Yager On a semantics for neural networks based on fuzzy quantifiers , 1992, Int. J. Intell. Syst..

[23]  Jean-Luc Marichal,et al.  Aggregation of interacting criteria by means of the discrete Choquet integral , 2002 .

[24]  Ming-yuan Chen,et al.  Induced generalized intuitionistic fuzzy OWA operator for multi-attribute group decision making , 2012, Expert Syst. Appl..

[25]  W. Pedrycz,et al.  Generalized means as model of compensative connectives , 1984 .

[26]  Francisco Herrera,et al.  Group decision making with incomplete fuzzy linguistic preference relations , 2009, Int. J. Intell. Syst..

[27]  José M. Merigó,et al.  The uncertain induced quasi‐arithmetic OWA operator , 2011, Int. J. Intell. Syst..

[28]  Dimitar Filev,et al.  On the concept of immediate probabilities , 1995, Int. J. Intell. Syst..

[29]  José M. Merigó,et al.  Probabilities in the OWA operator , 2012, Expert Syst. Appl..

[30]  Ching-Hsue Cheng,et al.  OWA rough set model for forecasting the revenues growth rate of the electronic industry , 2010, Expert Syst. Appl..

[31]  J. Merigó Fuzzy Multi-Person Decision Making with Fuzzy Probabilistic Aggregation Operators , 2011 .

[32]  José M. Merigó,et al.  GROUP DECISION-MAKING WITH GENERALIZED AND PROBABILISTIC AGGREGATION OPERATORS , 2012 .

[33]  Guiwu Wei,et al.  Induced Intuitionistic Fuzzy Ordered Weighted Averaging Operator and Its Application to Multiple Attribute Group Decision Making , 2008, RSKT.

[34]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[35]  Wolfgang Näther,et al.  Applying fuzzy measures for considering interaction effects in root dispersal models , 2007, Fuzzy Sets Syst..

[36]  Lamia Berrah,et al.  Monitoring the improvement of an overall industrial performance based on a Choquet integral aggregation , 2008 .

[37]  Chunqiao Tan,et al.  Induced choquet ordered averaging operator and its application to group decision making , 2010 .

[38]  Zhenyuan Wang,et al.  Using Non-Additive Measure for Optimization-Based Nonlinear Classification , 2012 .

[39]  Michel Grabisch,et al.  Subjective Evaluation of Discomfort in Sitting Positions , 2002, Fuzzy Optim. Decis. Mak..

[40]  Thomson-CSF,et al.  Fuzzy Integral for Classification and Feature Extraction , 2000 .

[41]  Jean-Luc Marichal,et al.  k-intolerant capacities and Choquet integrals , 2007, Eur. J. Oper. Res..

[42]  Vicenç Torra,et al.  The weighted OWA operator , 1997, Int. J. Intell. Syst..

[43]  Jacques Duchêne,et al.  Subjective Evaluation of Discomfort in Sitting Positions , 2002, Fuzzy Optim. Decis. Mak..

[44]  G. Choquet Theory of capacities , 1954 .

[45]  Janusz Kacprzyk,et al.  The Ordered Weighted Averaging Operators , 1997 .

[46]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[47]  José M. Merigó,et al.  Decision-making in sport management based on the OWA operator , 2011, Expert Syst. Appl..

[48]  R. Yager OWA neurons: a new class of fuzzy neurons , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[49]  Kanad K. Biswas,et al.  A Probabilistic and Decision Attitude Aggregation Operator for Intuitionistic Fuzzy Environment , 2013, Int. J. Intell. Syst..

[50]  José M. Merigó,et al.  Indicators for the characterization of discrete Choquet integrals , 2014, Inf. Sci..

[51]  Ronald R. Yager Choquet Aggregation Using Order Inducing Variables , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[52]  Vito Fragnelli,et al.  A game theoretical approach to the classification problem in gene expression data analysis , 2008, Comput. Math. Appl..

[53]  Z. S. Xu,et al.  The ordered weighted geometric averaging operators , 2002, Int. J. Intell. Syst..

[54]  José Ignacio Peláez,et al.  Analysis of OWA operators in decision making for modelling the majority concept , 2007, Appl. Math. Comput..

[55]  José M. Merigó,et al.  Fuzzy decision making with immediate probabilities , 2010, Comput. Ind. Eng..

[56]  Manish Aggarwal,et al.  Compensative weighted averaging aggregation operators , 2015, Appl. Soft Comput..

[57]  H. Zimmermann,et al.  Decisions and evaluations by hierarchical aggregation of information , 1983 .

[58]  Xiaohong Chen,et al.  Induced intuitionistic fuzzy Choquet integral operator for multicriteria decision making , 2011, Int. J. Intell. Syst..

[59]  Ronald R. Yager,et al.  Using trapezoids for representing granular objects: Applications to learning and OWA aggregation , 2008, Inf. Sci..

[60]  Radko Mesiar,et al.  Aggregation functions: Means , 2011, Inf. Sci..

[61]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .