Describing electron correlation effects in the framework of the elongation method—Elongation‐MP2: Formalism, implementation and efficiency

The extension of the elongation method into description of electron correlation effects at ab intio level is presented. The formalism and implementation of the elongation‐MP2 methodology is discussed. The results of calculations for model systems are presented to illustrate efficiency and accuracy of the method. Directions of the further development are highlighted. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010

[1]  Kaori Fukuzawa,et al.  Large scale FMO-MP2 calculations on a massively parallel-vector computer , 2008 .

[2]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[3]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[4]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[5]  Michael J. Frisch,et al.  Density matrix search using direct inversion in the iterative subspace as a linear scaling alternative to diagonalization in electronic structure calculations , 2003 .

[6]  Christian Ochsenfeld,et al.  Tighter multipole-based integral estimates and parallel implementation of linear-scaling AO-MP2 theory. , 2008, Physical chemistry chemical physics : PCCP.

[7]  Feng Long Gu,et al.  Efficiency and accuracy of the elongation method as applied to the electronic structures of large systems , 2006, J. Comput. Chem..

[8]  Emanuel H. Rubensson,et al.  Hartree-Fock calculations with linearly scaling memory usage. , 2008, The Journal of chemical physics.

[9]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[10]  P. Surján,et al.  Direct determination of fragment localized molecular orbitals and the orthogonality constraint , 2003 .

[11]  Yuriko Aoki,et al.  A theoretical synthesis of polymers by using uniform localization of molecular orbitals: Proposal of an elongation method , 1991 .

[12]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[13]  A. Imamura,et al.  Efficient and accurate calculations on the electronic structure of B-type poly(dG).poly(dC) DNA by elongation method: first step toward the understanding of the biological properties of aperiodic DNA. , 2007, The Journal of chemical physics.

[14]  Frederick R Manby,et al.  Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor. , 2006, The Journal of chemical physics.

[15]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[16]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[17]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[18]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[19]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[20]  B. Kirtman,et al.  Band structures built by the elongation method. , 2009, The Journal of chemical physics.

[21]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[22]  Masato Kobayashi,et al.  Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix. , 2006, The Journal of chemical physics.

[23]  Y. Aoki,et al.  Elongation method for calculating excited states of aromatic molecules embedded in polymers , 2009 .

[24]  B. Kirtman,et al.  Elongation method with cutoff technique for linear SCF scaling , 2005 .

[25]  B. Kirtman,et al.  A new localization scheme for the elongation method. , 2004, The Journal of chemical physics.