Steady-state analysis of a multiclass MAP/PH/c queue with acyclic PH retrials

A multiclass c-server retrial queueing system in which customers arrive according to a class-dependent Markovian arrival process (MAP) is considered. Service and retrial times follow class-dependent phase-type (PH) distributions with the further assumption that PH distributions of retrial times are acyclic. A necessary and sufficient condition for ergodicity is obtained from criteria based on drifts. The infinite state space of the model is truncated with an appropriately chosen Lyapunov function. The truncated model is described as a multidimensional Markov chain, and a Kronecker representation of its generator matrix is numerically analyzed.

[1]  Peter G. Taylor,et al.  Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes , 1995 .

[2]  Peter Buchholz,et al.  A Toolbox for Functional and Quantitative Analysis of DEDS , 1998, Computer Performance Evaluation.

[3]  Bara Kim,et al.  A survey of retrial queueing systems , 2015, Annals of Operations Research.

[4]  Tuan Phung-Duc,et al.  Multiserver retrial queues with after-call work , 2011 .

[5]  Srinivas R. Chakravarthy Analysis of MAP/PH/c Retrial Queue with Phase Type Retrials – Simulation Approach , 2013 .

[6]  Bong Dae Choi,et al.  MAP1, MAP2/M/c retrial queue with the retrial group of finite capacity and geometric loss , 1999 .

[7]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[8]  Tugrul Dayar,et al.  Iterative methods based on splittings for stochastic automata networks , 1998, Eur. J. Oper. Res..

[9]  Attahiru Sule Alfa,et al.  The map/ph/1 retrial queue , 1998 .

[10]  Werner Sandmann,et al.  Infinite level-dependent QBD processes and matrix-analytic solutions for stochastic chemical kinetics , 2011, Advances in Applied Probability.

[11]  M. Neuts A Versatile Markovian Point Process , 1979 .

[12]  Jesús R. Artalejo,et al.  Retrial Queueing Systems: A Computational Approach , 2008 .

[13]  Nawel Gharbi,et al.  Colored stochastic Petri nets for modelling and analysis of multiclass retrial systems , 2009, Math. Comput. Model..

[14]  G. Fayolle,et al.  Topics in the Constructive Theory of Countable Markov Chains , 1995 .

[15]  Jesús R. Artalejo,et al.  Retrial Queueing Systems , 2008 .

[16]  Wuyi Yue,et al.  Proceedings of the 5th International Conference on Queueing Theory and Network Applications , 2010 .

[17]  Giovanni Chiola,et al.  Stochastic Well-Formed Colored Nets and Symmetric Modeling Applications , 1993, IEEE Trans. Computers.

[18]  Bara Kim,et al.  MAP1, MAP2/M/c retrial queue with guard channels and its application to cellular networks , 1999 .

[19]  Dug Hee Moon,et al.  Approximation of M/M/c retrial queue with PH-retrial times , 2011, Eur. J. Oper. Res..

[20]  David M. Lucantoni,et al.  Algorithms for the multi-server queue with phase type service , 1985 .

[21]  Valentina Klimenok,et al.  Modern Probabilistic Methods for Analysis of Telecommunication Networks , 2013, Communications in Computer and Information Science.

[22]  R. Tweedie Sufficient conditions for regularity, recurrence and ergodicity of Markov processes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Jesús R. Artalejo,et al.  Accessible bibliography on retrial queues , 1999 .

[24]  Alexander N. Dudin,et al.  A retrial BMAP/SM/1 system with linear repeated requests , 1999, Queueing Syst. Theory Appl..

[25]  G. I. Falin On a multiclass batch arrival retrial queue , 1988, Advances in Applied Probability.

[26]  Che Soong Kim,et al.  Computation of the steady state distribution for multi-server retrial queues with phase type service process , 2012, Ann. Oper. Res..

[27]  Bara Kim Stability of a retrial queueing network with different classes of customers and restricted resource pooling , 2011 .

[28]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[29]  Tuan Phung-Duc,et al.  Performance analysis of call centers with abandonment, retrial and after-call work , 2014, Perform. Evaluation.

[30]  Hui Li,et al.  Ergodicity of the BMAP/PH/s/s+K retrial queue with PH-retrial times , 2000, Queueing Syst. Theory Appl..

[31]  Kiseon Kim,et al.  Delay Analysis of Orderly Reattempts in Retrial Queueing System with Phase Type Retrial Time , 2013, IEEE Communications Letters.

[32]  Alexander N. Dudin,et al.  A Retrial BMAP/PH/N System , 2002, Queueing Syst. Theory Appl..

[33]  Jesús R. Artalejo,et al.  Markovian retrial queues with two way communication , 2012 .

[34]  Hendrik Baumann,et al.  On the numerical solution of Kronecker-based infinite level-dependent QBD processes , 2013, Perform. Evaluation.

[35]  Marcel F. Neuts,et al.  Numerical investigation of a multiserver retrial model , 1990, Queueing Syst. Theory Appl..

[36]  Holger Hermanns,et al.  Bounding the equilibrium distribution of Markov population models , 2010, Numer. Linear Algebra Appl..

[37]  T. Dayar,et al.  Kronecker-based infinite level-dependent QBD processes , 2012 .

[38]  Tuan Phung-Duc,et al.  Two-way communication retrial queues with multiple types of outgoing calls , 2015 .

[39]  Jesus R. Artalejo,et al.  Modelling communication systems with phase type service and retrial times , 2007, IEEE Communications Letters.

[40]  Jesus R. Artalejo,et al.  Accessible bibliography on retrial queues: Progress in 2000-2009 , 2010, Math. Comput. Model..

[41]  Attahiru Sule Alfa,et al.  Approximation method for M/PH/1 retrial queues with phase type inter-retrial times , 1999, Eur. J. Oper. Res..

[42]  Dug Hee Moon,et al.  M/M/c Retrial Queue with Multiclass of Customers , 2014 .

[43]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[44]  Antonio Gómez-Corral,et al.  A bibliographical guide to the analysis of retrial queues through matrix analytic techniques , 2006, Ann. Oper. Res..

[45]  Evsey Morozov,et al.  Sufficient stability conditions for multi-class constant retrial rate systems , 2016, Queueing Syst. Theory Appl..

[46]  V. G. Kulkarni Expected waiting times in a multiclass batch arrival retrial queue , 1986 .

[47]  Peter Buchholz,et al.  Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications , 2014 .