Broad direction bandwidths for complex motion mechanisms

[1]  M G Harris,et al.  Independent Detectors for Expansion and Rotation, and for Orthogonal Components of Deformation , 2001, Perception.

[2]  T. Meese,et al.  Probability summation for multiple patches of luminance modulation , 2000, Vision Research.

[3]  T.C.A. Freeman,et al.  Unequal retinal and extra-retinal motion signals produce different perceived slants of moving surfaces , 2000, Vision Research.

[4]  A. T. Smith,et al.  Global motion adaptation , 2000, Vision Research.

[5]  Cardinal Directions for Optic Flow , 2000 .

[6]  D. Burr,et al.  Cardinal directions for visual optic flow , 1999, Current Biology.

[7]  A. Metha,et al.  Enhanced motion aftereffect for complex motions , 1999, Vision Research.

[8]  J. Frisby,et al.  The ‘Ecological’ Probability Density Function for Linear Optic Flow: Implications for Neurophysiology , 1999, Perception.

[9]  D. Burr,et al.  Large receptive fields for optic flow detection in humans , 1998, Vision Research.

[10]  P J Bex,et al.  Psychophysical evidence for a functional hierarchy of motion processing mechanisms. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  John M. Foley,et al.  Analysis of the effect of pattern adaptation on pattern pedestal effects: A two-process model , 1997, Vision Research.

[12]  T. Meese,et al.  Computation of surface slant from optic flow: Orthogonal components of speed gradient can be combined , 1997, Vision Research.

[13]  G. Orban,et al.  Selectivity of Macaque MT/V5 Neurons for Surface Orientation in Depth Specified by Motion , 1997, The European journal of neuroscience.

[14]  Guy A. Orban,et al.  Visual Processing in Macaque Area MT/V5 and Its Satellites (MSTd and MSTv) , 1997 .

[15]  Robert J. Snowden,et al.  The Effects of Adapting to Complex Motions: Position Invariance and Tuning to Spiral Motions , 1996, Journal of Cognitive Neuroscience.

[16]  D Buckley,et al.  Evidence for Good Recovery of Lengths of Real Objects Seen with Natural Stereo Viewing , 1996, Perception.

[17]  Nicholas E. Scott-Samuel,et al.  Sub-pixel accuracy: Psychophysical validation of an algorithm for fine positioning and movement of dots on visual displays , 1996, Vision Research.

[18]  Kevin Gurney,et al.  Rotation and Radial Motion Thresholds Support a Two-Stage Model of Differential-Motion Analysis , 1996, Perception.

[19]  T. Meese,et al.  Deformation extractors in human vision: Evidence from subthreshold summation experiments , 1996 .

[20]  Tim S. Meese,et al.  Speed gradients and the perception of surface slant: Analysis is two-dimensional not one-dimensional , 1995, Vision Research.

[21]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[22]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  T S Meese,et al.  Using the standard staircase to measure the point of subjective equality: A guide based on computer simulations , 1995, Perception & psychophysics.

[24]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  J. M. Foley,et al.  Human luminance pattern-vision mechanisms: masking experiments require a new model. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Kechen Zhang,et al.  Emergence of Position-Independent Detectors of Sense of Rotation and Dilation with Hebbian Learning: An Analysis , 1999, Neural Computation.

[29]  David R Badcock,et al.  Asymmetries in the Sensitivity to Motion in Depth: A Centripetal Bias , 1993, Perception.

[30]  H. Wilson,et al.  Spatial frequency adaptation and contrast gain control , 1993, Vision Research.

[31]  J. Raymond Movement direction analysers: Independence and bandwidth , 1993, Vision Research.

[32]  A. Sekuler Simple-pooling of unidirectional motion predicts speed discrimination for looming stimuli , 1992, Vision Research.

[33]  T. Freeman,et al.  Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure , 1992, Vision Research.

[34]  D. Burr,et al.  Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[35]  Guy A. Orban,et al.  The role of direction information in the perception of geometric optic flow components , 1990, Perception & psychophysics.

[36]  N. Graham Visual Pattern Analyzers , 1989 .

[37]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[38]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[39]  J. Koenderink Optic flow , 1986, Vision Research.

[40]  S. McKee,et al.  Statistical properties of forced-choice psychometric functions: Implications of probit analysis , 1985, Perception & psychophysics.

[41]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[42]  M J Morgan,et al.  Vernier acuity predicted from changes in the light distribution of the retinal image. , 1985, Spatial vision.

[43]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[44]  R. Sekuler,et al.  Detection and identification of moving targets , 1983, Vision Research.

[45]  A. Watson Summation of grating patches indicates many types of detector at one retinal location , 1982, Vision Research.

[46]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[47]  Robert Sekuler,et al.  A two-dimensional analysis of direction-specific adaptation , 1980, Vision Research.

[48]  R Sekuler,et al.  Models of stimulus uncertainty in motion perception. , 1980, Psychological review.

[49]  H R Wilson,et al.  Further evidence for four mechanisms mediating vision at threshold: sensitivities to complex gratings and aperiodic stimuli. , 1979, Journal of the Optical Society of America.

[50]  R. Sekuler,et al.  Masking of motion by broadband and filtered directional noise , 1979 .

[51]  D. Regan,et al.  Looming detectors in the human visual pathway , 1978, Vision Research.

[52]  Quick Rf A vector-magnitude model of contrast detection. , 1974 .

[53]  G. B. Wetherill,et al.  SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. , 1965, The British journal of mathematical and statistical psychology.

[54]  T. Cornsweet,et al.  The staircrase-method in psychophysics. , 1962, The American journal of psychology.

[55]  Vision Research , 1961, Nature.