Femto-molar sensitive field effect transistor biosensors based on silicon nanowires and antibodies

This article presents electrically-based sensors made of high quality silicon nanowire field effect transistors (SiNW-FETs) for high sensitive detection of vascular endothelial growth factor (VEGF) molecules. SiNW-FET devices, fabricated through an IC/CMOS compatible top-down approach, are covalently functionalized with VEGF monoclonal antibodies in order to sense VEGF. Increasing concentrations of VEGF in the femto molar range determine increasing conductance values as proof of occurring immuno-reactions at the nanowire (NW) surface. These results confirm data in literature about the possibility of sensing pathogenic factors with SiNW-FET sensors, introducing the innovating aspect of detecting biomolecules in dry conditions.

[1]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[2]  B. Keyt,et al.  The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding. , 1997, Structure.

[3]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[4]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[5]  J. Hoheisel,et al.  Antibody microarrays: An evaluation of production parameters , 2003, Proteomics.

[6]  Bart Landuyt,et al.  Vascular Endothelial Growth Factor and Angiogenesis , 2004, Pharmacological Reviews.

[7]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[8]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[9]  S. Ingebrandt,et al.  Field-effect sensors with charged macromolecules: characterisation by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. , 2007, Biosensors & bioelectronics.

[10]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[11]  Seong Ho Kang,et al.  Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM , 2007 .

[12]  N Balasubramanian,et al.  DNA sensing by silicon nanowire: charge layer distance dependence. , 2008, Nano letters.

[13]  Kasuya Kasuya,et al.  Modification of sensor surface with oligopeptide as liposome anchor for development of analytical devices based on biomembrane systems , 2009 .

[14]  G. Micheli,et al.  A new ethylene glycol-silane monolayer for highly-specific DNA detection on Silicon Chips , 2010 .

[15]  C. Schönenberger,et al.  Nernst limit in dual-gated Si-nanowire FET sensors. , 2010, Nano letters.

[16]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[17]  P. Sarro,et al.  IC compatible top down process for Silicon Nanowire fet arrays with three {100} surfaces for (BIO) chemical sensing , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[18]  Yun-Chorng Chang,et al.  Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection , 2011, Nanotechnology.

[19]  Thomas Moh Shan Yau,et al.  Fabrication of Nanowires for Biosensing Applications , 2012 .

[20]  P. Sarro,et al.  Silicon nanowire FET arrays for real time detection of chemical activation of cells , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[21]  Yusuf Leblebici,et al.  Memristive-Biosensors: A New Detection Method by Using Nanofabricated Memristors , 2012 .

[22]  Yusuf Leblebici,et al.  Memristive Biosensors Under Varying Humidity Conditions , 2014, IEEE Transactions on NanoBioscience.