High-temperature membranes in power generation with CO2 capture

A survey is made of high-temperature membranes and several possible applications of membrane reactors for integration in power generation cycles with CO2 capture. Current performance and limitations of relevant inorganic membranes are presented and discussed. Integrated H2, O2 or CO2 membrane separation is analysed and it is concluded that development of power plant concepts including membrane technology is not yet fully explored. Significant design optimisation would be required in order to identify efficient, feasible and environmentally sound technical solutions. In addition, further development and validation of performance of membranes in real applications are needed.

[1]  H. Iwahara,et al.  High temperature-type proton conductive solid oxide fuel cells using various fuels , 1986 .

[2]  Jürgen Caro,et al.  Zeolite membranes – state of their development and perspective , 2000 .

[3]  Meilin Liu,et al.  Transport properties of SrCe0.95Y0.05O3−δ and its application for hydrogen separation , 1998 .

[4]  Rune Bredesen,et al.  High temperature corrosion in SOFC environments , 1992 .

[5]  Giacomo Cao,et al.  Nonuniform catalyst distribution for inorganic membrane reactors: Theoretical considerations and preparation techniques , 1994 .

[6]  Y. S. Lin,et al.  Improvement of Thermal Stability of Porous Nanostructured Ceramic Membranes , 1994 .

[7]  Norio Miura,et al.  Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability , 1991 .

[8]  Henricus J.M. Bouwmeester,et al.  Oxygen Permeation Properties of Dense Bi1.5Er0.5O3-Ag Cermet Membranes , 1997 .

[9]  Masaki Takahashi,et al.  Gas turbine based power plants : technology and market status , 1999 .

[10]  Paul K. T. Liu,et al.  Characterization of ceramic membranes I. Thermal and hydrothermal stabilities of commercial 40 Å membranes , 1994 .

[11]  Willes H. Weber,et al.  Dispersion studies on the system La2O3γ-Al2O3 , 1989 .

[12]  Yuehe Lin,et al.  MICROPOROUS INORGANIC MEMBRANES , 2000 .

[13]  Olav Bolland,et al.  Exergy analysis of gas-turbine combined cycle with CO2 capture using auto-thermal reforming of natural gas , 2000 .

[14]  Madhukar Bhaskara Rao,et al.  Selective Surface Flow Membrane for Gas Separation , 1999 .

[15]  K. Arai,et al.  Trial design for a CO2 recovery power plant by burning pulverized coal in , 1997 .

[16]  Freek Kapteijn,et al.  Permeation and separation behaviour of a silicalite-1 membrane , 1995 .

[17]  Xenophon E. Verykios,et al.  Application of a dense silica membrane reactor in the reactions of dry reforming and partial oxidation of methane , 1996 .

[18]  D. Edlund,et al.  The relationship between intermetallic diffusion and flux decline in composite-metal membranes: implications for achieving long membrane lifetime , 1995 .

[19]  Hiroshi Shimazaki,et al.  Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber , 1999 .

[20]  Katsuki Kusakabe,et al.  Pore structure and permeance of amorphous Si-C-O membranes with high durability at elevated temperature , 1997 .

[21]  Nasr Z. Misak,et al.  Interdiffusion in alkali ion sorption by hydrous stannic oxide : mechanism and effect of co-ion , 1991 .

[22]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[23]  M. Pijolat,et al.  Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. I: Kinetic data , 1987 .

[24]  Zhou Yu,et al.  Activation mechanism of hydrogen-storage electrode alloy Ml(NiCoMnTi)5 produced by gas atomization , 1998 .

[25]  S. Rajendran,et al.  Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics , 1994, Journal of Materials Science.

[26]  P. Dyer,et al.  Ion transport membrane technology for oxygen separation and syngas production , 2000 .

[27]  Scott T. Milner,et al.  Oxygen permeation in SrCo0.8Fe0.2O3 − δ membranes with porous electrodes , 1997 .

[28]  James Wei,et al.  Diffusion mechanism of hydrocarbons in zeolites—I. Theory , 1992 .

[29]  Olav Bolland,et al.  New concepts for natural gas fired power plants which simplify the recovery of carbon dioxide , 1992 .

[30]  Suk Woo Nam,et al.  Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide , 1996 .

[31]  H. Iwahara,et al.  Technological challenges in the application of proton conducting ceramics , 1995 .

[32]  Enrico Drioli,et al.  Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure , 2003 .

[33]  Roland Dittmeyer,et al.  Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium , 2001 .

[34]  Bernard P. A. Grandjean,et al.  Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating , 1993 .

[35]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[36]  S. Ted Oyama,et al.  Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases , 2000 .

[37]  Anthony G. Dixon,et al.  Adsorption, permeation, and diffusion of gases in microporous membranes. II: Permeation of gases in microporous glass membranes , 1992 .

[38]  Shigeru Yamauchi,et al.  Nonstoichiometry and phase relationship of the SrFeO2.5SrFeO3 system at high temperature , 1992 .

[39]  Kaoru Onuki,et al.  Hydrogen separation in H2–H2O–HI gaseous mixture using the silica membrane prepared by chemical vapor deposition , 1999 .

[40]  Giovanni Lozza,et al.  Natural Gas Decarbonization to Reduce CO2 Emission From Combined Cycles—Part II: Steam-Methane Reforming , 2002 .

[41]  Olav Bolland,et al.  Comparison of two CO2 removal options in combined cycle power plants , 1998 .

[42]  Suk Woo Nam,et al.  Chemical vapor deposition of hydrogen-permselective silica films on porous glass supports from tetraethylorthosilicate , 1993 .

[43]  David W.T. Rippin,et al.  Deactivation and regeneration of PdAg membranes for dehydrogenation reactions , 1994 .

[44]  Katsuki Kusakabe,et al.  Separation of hydrogen from steam using a SiC-based membrane formed by chemical vapor deposition of triisopropylsilane , 1998 .

[45]  Madhav Acharya,et al.  Spray-coating of nanoporous carbon membranes for air separation , 1999 .

[46]  Seung-Man Yang,et al.  Preparation of sol-gel driven alumina membrane modified by soaking and vapor-deposition method , 1995 .

[47]  A. Soffer,et al.  Mechanism of permeation through molecular-sieve carbon membrane. Part 1.—The effect of adsorption and the dependence on pressure , 1986 .

[48]  Suttichai Assabumrungrat,et al.  The effect of direction of hydrogen permeation on the rate through a composite palladium membrane , 2000 .

[49]  William J. Weber,et al.  Electrochemical Properties of Mixed Conducting Perovskites La1 − x M x Co1 − y Fe y O 3 − δ (M = Sr, Ba, Ca) , 1996 .

[50]  James H. White,et al.  Investigations on BaTh0.9Gd0.1 O 3 as an Intermediate Temperature Fuel Cell Solid Electrolyte , 1992 .

[51]  George E. Marnellos,et al.  Methane activation on a La0.6Sr0.4Co0.8Fe0.2O3 perovskite: Catalytic and electrocatalytic results , 1998 .

[52]  A. Burggraaf,et al.  Single gas permeation of thin zeolite (MFI) membranes: theory and analysis of experimental observations , 1999 .

[53]  Yuehe Lin,et al.  Nanostructured thin palladium-silver membranes: Effects of grain size on gas permeation properties , 2001 .

[54]  Guohui Wu,et al.  Rh-modified alumina membranes : preparation, characterization and reaction studies , 1999 .

[55]  King Lun Yeung,et al.  Palladium-silver composite membranes by electroless plating technique , 1999 .

[56]  I. R. Harris,et al.  A comparative study of hydrogen permeabilities and solubilities in some palladium solid solution alloys , 1978 .

[57]  H. Verweij,et al.  High-selectivity, high-flux silica membranes for gas separation , 1998, Science.

[58]  B. Sea,et al.  Gas permeation characteristics of silica/alumina composite membrane prepared by chemical vapor deposition , 2001 .

[59]  King Lun Yeung,et al.  Performance of alumina, zeolite, palladium, Pd–Ag alloy membranes for hydrogen separation from Towngas mixture , 2002 .

[60]  John B. Goodenough,et al.  Superior Perovskite Oxide‐Ion Conductor; Strontium‐ and Magnesium‐Doped LaGaO3: I, Phase Relationships and Electrical Properties , 2005 .

[61]  Fritz Aldinger,et al.  Bismuth based oxide electrolytes— structure and ionic conductivity , 1999 .

[62]  R. Pruschek,et al.  Combined cycle power plant with integrated coal gasification, CO shift and CO2 washing , 1995 .

[63]  Masato Machida,et al.  Preparation and characterization of metal-dispersed alumina membranes for selective separation of hydrogen , 1994 .

[64]  Yunfeng Lu,et al.  Dual-Layer Asymmetric Microporous Silica Membranes , 2000 .

[65]  H. Iwahara,et al.  High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas , 1986 .

[66]  N. Yamazoe,et al.  Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides , 1988 .

[67]  Hideaki Maeda,et al.  Preparation of supported composite membrane by pyrolysis of polycarbosilane for gas separation at high temperature , 1995 .

[68]  Wilhelm F. Maier,et al.  hydrophobic silica membranes for gas separation , 1999 .

[69]  Joachim Maier,et al.  Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications , 2001 .

[70]  John A. Kilner,et al.  Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ , 1999 .

[71]  Kaoru Onuki,et al.  Separation of hydrogen from a H2 H2 OHI gaseous mixture using a silica membrane , 2000 .

[72]  Yuehe Lin,et al.  Fabrication of thin metallic membranes by MOCVD and sputtering , 1997 .

[73]  Edward J. Daniels,et al.  Integrating O2 production with power systems to capture CO2 , 1997 .

[74]  N. Itoh,et al.  A carbon membrane reactor , 2000 .

[75]  Jun Fan,et al.  High flux zirconia composite membrane for hydrogen separation at elevated temperature , 2000 .

[76]  Y. S. Lin,et al.  A comparative study on thermal and hydrothermal stability of alumina, titania and zirconia membranes , 1994 .

[77]  Steve Tennison,et al.  Current hurdles in the commercial development of inorganic membrane reactors , 2000 .

[78]  Weiqiang Liang,et al.  Repair of a Pd/α-Al2O3 composite membrane containing defects , 1999 .

[79]  Harry L. Tuller,et al.  Application of Defect Modeling to Materials Design , 1994 .

[80]  H. Iwahara,et al.  Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production , 1981 .

[81]  Shigeyuki Uemiya,et al.  Rhodium- and iridium-dispersed porous alumina membranes and their hydrogen permeation properties , 2000 .

[82]  Robert E. Buxbaum,et al.  Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium , 1996 .

[83]  Hideaki Inaba,et al.  Ceria-based solid electrolytes , 1996 .

[84]  Olav Bolland,et al.  Exergy Analysis of Gas-Turbine Combined Cycle With CO2 Capture Using Pre-Combustion Decarbonization of Natural Gas , 2002 .

[85]  Paul K. T. Liu,et al.  Characterization of hydrogen-permselective microporous ceramic membranes , 1994 .

[86]  Midori Watanabe,et al.  Hydrogen recovery from a H2-H2O-HBr mixture utilizing silica-based membranes at elevated temperatures. 1. Preparation of H2O- and H2-selective membranes , 1998 .

[87]  Eric Croiset,et al.  NOx and SO2 emissions from O2/CO2 recycle coal combustion , 2001 .

[88]  Brian C. H. Steele Ceramic ion conducting membranes , 1996 .

[89]  M. R. Haines,et al.  Progress with the development of a CO2 capturing solid oxide fuel cell , 2002 .

[90]  Hideaki Maeda,et al.  Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method , 1993 .

[91]  Henricus J.M. Bouwmeester,et al.  Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides , 1993 .

[92]  Shigeyuki Uemiya,et al.  Steam reforming of methane in membrane reactors: comparison of electroless-plating and CVD membranes and catalyst packing modes , 2000 .

[93]  H. W. Zandbergen,et al.  Application of lanthanum to pseudo-boehmite and γ-Al2O3 , 1991 .

[94]  Ahmad Fauzi Ismail,et al.  A review on the latest development of carbon membranes for gas separation , 2001 .

[95]  Junichiro Mizusaki,et al.  Measurement of oxygen permeability in CeO2 doped CSZ , 1995 .

[96]  Francesca Sarto,et al.  Sputtered, electroless, and rolled palladium–ceramic membranes , 2002 .

[97]  Shigeyuki Uemiya,et al.  State-of-the-Art of Supported Metal Membranes for Gas Separation , 1999 .

[98]  Shigeki Hara,et al.  Decline in Hydrogen Permeation Due to Concentration Polarization and CO Hindrance in a Palladium Membrane Reactor , 1999 .

[99]  Sun-Tak Hwang,et al.  Gas separation properties of a new polymer/inorganic composite membrane , 1992 .

[100]  Henricus J.M. Bouwmeester,et al.  Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides , 1994 .

[101]  Ronald L. Cook,et al.  On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells , 1991 .

[102]  Gilles Lagrange,et al.  Electrode–electrolyte BIMEVOX system for moderate temperature oxygen separation , 1998 .

[103]  Katsuki Kusakabe,et al.  Preparation of thermostable amorphous SiCO membrane and its application to gas separation at elevated temperature , 1996 .

[104]  Shoji Kimura,et al.  Preparation of microporous membranes by TEOS/O3 CVD in the opposing reactants geometry , 2000 .

[105]  Per Kofstad,et al.  Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. , 1972 .

[106]  R. Hurlbert,et al.  Diffusion of Hydrogen through Palladium , 1961 .

[107]  Antonio B. Fuertes,et al.  Adsorption-selective carbon membrane for gas separation , 2000 .

[108]  Takashi Hibino,et al.  Protonic conduction in calcium, strontium and barium zirconates , 1993 .

[109]  A. E. Jansen,et al.  CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: performances and prospects , 2002 .

[110]  Shigeki Matsuo,et al.  A conductivity and thermal gravimetric analysis of a Y-doped SrZrO3 single crystal , 1997 .

[111]  M. Lankhorst,et al.  Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3−δ , 1997 .

[112]  I. R. Harris,et al.  A Comparison of the Permeability, Solubility, and Diffusion Characteristics of H and D in a Palladium—8% Yttrium and Palladium—25% Silver Solid Solution Alloy* , 1989 .

[113]  Bernard P. A. Grandjean,et al.  Catalytic palladium‐based membrane reactors: A review , 1991 .

[114]  Robert E. Buxbaum,et al.  Palladium-catalyzed oxidative diffusion for tritium extraction from breeder-blanket fluids at low concentrations , 1986 .

[115]  A. J. deRosset,et al.  Diffusion of Hydrogen through Palladium Membranes , 1960 .

[116]  Fabio Bozza,et al.  The Employment of Hydrogenated Fuels From Natural Gas Reforming: Gas Turbine and Combustion Analysis , 2002 .

[117]  Olav Bolland,et al.  Modelling and Simulation of Transient Performance of the Semi-Closed O , 2003 .

[118]  Arvind Varma,et al.  Novel preparation techniques for thin metal-ceramic composite membranes , 1995 .

[119]  Haruhiko Ohya,et al.  Characteristics of a zirconia composite membrane fabricated by a laser firing method , 1996 .

[120]  H. W. Brinkman,et al.  Innovative hollow fiber ceramic membranes , 1999 .

[121]  Michael Tsapatsis,et al.  Structure and aging characteristics of H2-permselective SiO2-Vycor membranes , 1994 .

[122]  D. Tsai,et al.  A Hydrogen‐Permselective Silicon Oxycarbide Membrane Derived from Polydimethylsilane , 2004 .

[123]  Weiqiang Liang,et al.  The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane , 2000 .

[124]  Yoshio Nakano,et al.  Gas permeation through carbonized hollow fiber membranes prepared by gel modification of polyamic acid , 1999 .

[125]  Jackie Y. Ying,et al.  Nanostructured palladium–iron membranes for hydrogen separation and membrane hydrogenation reactions , 2002 .

[126]  M. Rao,et al.  Hydrogen production by hybrid SMR–PSA–SSF membrane system , 1999 .

[127]  Rune Bredesen,et al.  Crystal structure of the mixed conductor Sr4Fe4Co2O13 , 1997 .

[128]  Lars-Gunnar Ekedahl,et al.  The effect of CO and O2 on hydrogen permeation through a palladium membrane , 2000 .

[129]  Mitsuaki Nakata,et al.  Electrical properties in the ZrO2-CeO2-Y2O3 system , 1995 .

[130]  Hirofumi Ohashi,et al.  Hydrogen production from hydrogen sulfide using membrane reactor integrated with porous membrane having thermal and corrosion resistance , 1998 .

[131]  Kouhei Ito,et al.  Protonic Conduction Domain of Indium‐Doped Calcium Zirconate , 1995 .

[132]  W. L. Worell,et al.  Electrical properties of mixed-conducting oxides having high oxygen-ion conductivity , 1992 .

[133]  Shigeyuki Uemiya,et al.  Separation of hydrogen through palladium thin film supported on a porous glass tube , 1991 .

[134]  Douglas J. Clark,et al.  Separation of oxygen by using zirconia solid electrolyte membranes , 1992 .

[135]  Dwayne Thomas Friesen,et al.  Hydrogen-permeable metal membranes for high-temperature gas separations , 1994 .

[136]  Satoshi Hamakawa,et al.  Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3−α thin films , 2002 .

[137]  Gary L. Messing,et al.  Low-temperature sintering of α-alumina-seeded boehmite gels , 1994 .

[138]  Michael Schwartz,et al.  Catalytic membrane reactors for spontaneous synthesis gas production , 2000 .

[139]  G. Mairesse,et al.  Recent Material Developments in Fast Oxide Ion Conductors , 1998 .

[140]  M Bracht,et al.  Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study , 1997 .

[141]  Y. Ma,et al.  Permeability, surface area, pore volume and pore size of Vycor glass membrane heat-treated at high temperatures , 1995 .

[142]  Henk Verweij,et al.  Improved performance of silica membranes for gas separation , 1998 .

[143]  Harry L. Tuller,et al.  Rietveld X-ray Powder Profile Analysis and Electrical Conductivity of Fastion Conducting Gd 2 (Ti l-y Sn y ) 2 O 7 Solid Solutions , 1996 .

[144]  Hideto Moritsuka CO2 Capture Using a Hydrogen Decomposed From Natural Gas Turbine , 2001 .

[145]  J. Way,et al.  Preparation and characterization of a composite palladium-ceramic membrane , 1993 .

[146]  Sotiris E. Pratsinis,et al.  Hydrothermal stability of pure and modified microporous silica membranes , 1995, Journal of Materials Science.

[147]  Haruhiko Ohya,et al.  Separation of hydrogen from thermochemical processes using zirconia-silica composite membrane , 1994 .

[148]  Olav Bolland,et al.  Inherent CO2 Capture Using Chemical Looping Combustion in a Natural Gas Fired Power Cycle , 2004 .

[149]  Harry L. Tuller,et al.  Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds , 1992 .

[150]  C. S. Chen,et al.  Stabilized bismuth oxide–noble metal mixed conducting composites as high temperature oxygen separation membranes , 1999 .

[151]  S. Shin,et al.  Order-disorder transition of Sr2Fe2O5 from brownmillerite to perovskite structure at an elevated temperature , 1978 .

[152]  A. Burggraaf,et al.  Gas and surface diffusion in modified γ-alumina systems , 1989 .

[153]  Shivaji Sircar,et al.  Nanoporous carbon membranes for separation of gas mixtures by selective surface flow , 1993 .

[154]  Kew-Ho Lee,et al.  Preparation of palladium membranes from the reaction of Pd(C3H3)(C5H5) with H2: wet-impregnated deposition , 1999 .

[155]  Seung-Man Yang,et al.  Synthesis of palladium impregnated alumina membrane for hydrogen separation , 1994 .

[156]  W. A. Pledger,et al.  Thermolysis of hydrogen sulfide in a metal-membrane reactor , 1993 .

[157]  Katsuki Kusakabe,et al.  Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall , 1995 .

[158]  Momoji Kubo,et al.  The effect of gas molecule affinities on CO2 separation from the CO2/N2 gas mixture using inorganic membranes as investigated by molecular dynamics simulation , 1996 .

[159]  A. S. Damle,et al.  Thermal/chemical degradation of inorganic membrane materials , 1995 .

[160]  Katsuki Kusakabe,et al.  Formation of hydrogen-permselective SiO2 membrane in macropores of α-alumina support tube by thermal decomposition of TEOS , 1995 .

[161]  A. Soffer,et al.  The Carbon Molecular Sieve Membranes. General Properties and the Permeability of CH4/H2 Mixture , 1987 .

[162]  G. Cao,et al.  Electrical conductivity and oxygen semipermeability of terbia and yttria stabilized zirconia , 1994 .

[163]  R. Pruschek,et al.  IGCC — The Best Choice for Producing Low-CO2 Power , 2003 .

[164]  Sangtae Kim,et al.  Determination of oxygen permeation kinetics in a ceramic membrane based on the composition SrFeCo0.5O3.25−δ , 1998 .

[165]  U. Balachandran,et al.  Methane to syngas via ceramic membranes , 1995 .

[166]  John P. Collins,et al.  Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors , 1996 .

[167]  Isaac Abrahams,et al.  Electrical conductivity and structure correlation in BIZNVOX , 1999 .

[168]  N. Minh Ceramic Fuel Cells , 1993 .

[169]  T. S. Moss,et al.  Multilayer metal membranes for hydrogen separation , 1998 .

[170]  S. Nam,et al.  Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition , 1999 .

[171]  Wayne L. Lundberg,et al.  Status of Pressurized SOFC/Gas Turbine Power System Development at Siemens Westinghouse , 2002 .

[172]  Rune Bredesen,et al.  Preparation and Properties of Hydrothermally Stable γ-Alumina Membranes , 2001 .

[173]  Yuehe Lin,et al.  Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes , 1995 .

[174]  Katsuki Kusakabe,et al.  Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane , 2000 .

[175]  Hideaki Maeda,et al.  Hydrogen-Permselective SiO2 Membrane Formed in Pores of Alumina Support Tube by Chemical Vapor Deposition with Tetraethylorthosilicate , 1994 .

[176]  Yi Hua Ma,et al.  Defect‐free palladium membranes on porous stainless‐steel support , 1998 .

[177]  William J. Weber,et al.  Electrochemical properties of mixed conducting perovskites La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) , 1996 .

[178]  Giovanni Lozza,et al.  Natural Gas Decarbonization to Reduce CO2 Emission From Combined Cycles—Part I: Partial Oxidation , 2002 .

[179]  Midori Watanabe,et al.  Formation of hydrogen permselective silica membrane for elevated temperature hydrogen recovery from a mixture containing steam , 1996 .

[180]  Yngve Larring,et al.  Mixed hydrogen ion–electronic conductors for hydrogen permeable membranes , 2000 .

[181]  R. Soria,et al.  Overview on industrial membranes , 1995 .

[182]  Henk Verweij,et al.  Thickness dependence of oxygen permeation through erbia-stabilized bismuth oxide-silver composites , 1997 .

[183]  Midori Watanabe,et al.  Separation of hydrogen from an H2-H2O-HBr system with an SiO2 membrane formed in macropores of an α-alumina support tube , 1996 .

[184]  Kohei Oda,et al.  Hydrothermal corrosion of alumina ceramics , 2005 .

[185]  K. J. de Vries,et al.  Electrochemical properties of stabilized δ-Bi2O3. Oxygen pump properties of Bi2O3-Er2O3 solid solutions , 1989 .

[186]  N. Itoh,et al.  Deposition of palladium inside straight mesopores of anodic alumina tube and its hydrogen permeability , 2000 .

[187]  Harry L. Tuller,et al.  A novel titanate-based oxygen ion conductor: Gd2Ti2O7 , 1995 .

[188]  Lev N. Krasnoperov,et al.  Porous Vycor membranes modified by chemical vapor deposition of boron nitride for gas separation , 1997 .

[189]  Tatsumi Ishihara,et al.  Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide , 1995 .

[190]  Henricus J.M. Bouwmeester,et al.  Kinetic decomposition of La0.3Sr0.7CoO3−δ perovskite membranes during oxygen permeation , 1998 .

[191]  Masato Machida,et al.  Promotion of hydrogen permeation on metal-dispersed alumina membranes and its application to a membrane reactor for methane steam reforming , 1994 .

[192]  Hironori Fujii,et al.  Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions , 2001 .

[193]  D. Golomb,et al.  Power plants with CO2 capture using integrated air separation and flue gas recycling , 1996 .

[194]  Katsuki Kusakabe,et al.  Preparation of supported palladium membrane and separation of hydrogen , 1996 .

[195]  H. Iwahara,et al.  Hydrogen pumps using proton-conducting ceramics and their applications , 1999 .

[196]  Carlo U. Segre,et al.  Electrical Transport Properties and Defect Structure of SrFeCo0.5 O x , 1996 .

[197]  W. L. Worrell,et al.  Electrical properties of novel mixed-conducting oxides , 1989 .

[198]  P. S. Maiya,et al.  Ceramic membrane reactor for converting methane to syngas , 1997 .