Geometric dynamics of optimization

This paper investigates a family of dynamical systems arising from an evolutionary re-interpretation of certain optimal control and optimization problems. We focus particularly on the application in image registration of the theory of \emph{metamorphosis}. Metamorphosis is a means of tracking the optimal changes of shape that are necessary for registration of images with various types of data structures, without requiring that the transformations of shape be diffeomorphisms. This is a rich field whose possibilities are just beginning to be developed. In particular, metamorphosis and its related variants in the geometric approach to control and optimization can be expected to produce many exciting opportunities for new applications and analysis in geometric dynamics.

[1]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[2]  G. Misiołek Classical solutions of the periodic Camassa—Holm equation , 2002 .

[3]  Darryl D. Holm,et al.  Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity , 1983 .

[4]  Paul Dupuis,et al.  Variational problems on ows of di eomorphisms for image matching , 1998 .

[5]  Darryl D. Holm,et al.  The Momentum Map Representation of Images , 2009, J. Nonlinear Sci..

[6]  Darryl D. Holm,et al.  Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .

[7]  Alain Trouvé,et al.  The Euler-Poincare theory of Metamorphosis , 2008, ArXiv.

[8]  Roger W. Brockett The double bracket equation as the solution of a variational problem , 1994 .

[9]  P. Constantin,et al.  An Eulerian-Lagrangian approach for incompressible fluids: Local theory , 2000 .

[10]  Darryl D. Holm Hamiltonian dynamics of a charged fluid, including electro- and magnetohydrodynamics , 1986 .

[11]  Darryl D. Holm,et al.  Geodesic boundary value problems with symmetry , 2009, 0911.2205.

[12]  Michael I. Miller,et al.  Evolutions equations in computational anatomy , 2009, NeuroImage.

[13]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[14]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[15]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[16]  V. Antonini Group action. , 1961, The Canadian nurse.

[17]  Darryl D. Holm,et al.  Singular solutions of a modified two-component Camassa-Holm equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[19]  Darryl D. Holm Euler's fluid equations: Optimal control vs optimization , 2009 .

[20]  Jerrold E. Marsden,et al.  Hamiltonian structure and Lyapunov stability for ideal continuum dynamics , 1986 .

[21]  Shantala Mukherjee,et al.  Coadjoint Orbits for A , 2005 .

[22]  Jerrold E. Marsden,et al.  Discrete rigid body dynamics and optimal control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[23]  Jerrold E. Marsden,et al.  EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .

[24]  Darryl D. Holm,et al.  Two-component CH system: inverse scattering, peakons and geometry , 2010, Inverse Problems.

[25]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[26]  Darryl D. Holm Euler-Poincare Dynamics of Perfect Complex Fluids , 2001, nlin/0103041.

[27]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[28]  A.M. Bloch,et al.  An optimal control formulation for inviscid incompressible ideal fluid flow , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[29]  Mario Micheli,et al.  Effects of curvature on the analysis of landmark shape manifolds , 2008, 2008 15th IEEE International Conference on Image Processing.

[30]  J. Marsden,et al.  Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids , 1983 .

[31]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[32]  Tudor S. Ratiu,et al.  Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids , 2008, 0903.4287.

[33]  Peter E. Crouch,et al.  Optimal control and geodesic flows , 1996 .

[34]  J. Marsden,et al.  Semidirect products and reduction in mechanics , 1984 .

[35]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[36]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[37]  F. Gay-Balmaz,et al.  Geometric dynamics on the automorphism group of principal bundles: geodesic flows, dual pairs and chromomorphism groups , 2010, 1006.0650.

[38]  François Gay-Balmaz,et al.  Geodesic flows on the automorphism group of principal bundles , 2010 .

[39]  Peter E. Crouch,et al.  Double Bracket Equations and Geodesic Flows on Symmetric Spaces , 1997 .

[40]  Darryl D. Holm,et al.  Soliton dynamics in computational anatomy , 2004, NeuroImage.

[41]  Youjin Zhang,et al.  A Two-component Generalization of the Camassa-Holm Equation and its Solutions , 2005, nlin/0501028.

[42]  Camillo De Lellis,et al.  Low-Regularity Solutions of the Periodic Camassa–Holm Equation , 2007 .

[43]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[44]  A. Bloch,et al.  A variational problem on Stiefel manifolds , 2006, math/0609038.

[45]  L. Younes Shapes and Diffeomorphisms , 2010 .

[46]  Darryl D. Holm,et al.  Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation , 2003, nlin/0312048.

[47]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[48]  P. Michor,et al.  The Convenient Setting of Global Analysis , 1997 .

[49]  Antonio Guarnieri,et al.  WITH THE COLLABORATION OF , 2009 .

[50]  François Gay-Balmaz,et al.  Reduction theory for symmetry breaking , 2009 .

[51]  Darryl D. Holm,et al.  Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework : from the Discontinuous Image Matching Problem to a Stochastic Growth Model , 2009 .

[52]  Stephen Marsland,et al.  N -particle dynamics of the Euler equations for planar diffeomorphisms , 2005, nlin/0512030.

[53]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[54]  M. B. Liñán A geometric study of abnormality in optimal control problems for control and mechanical control systems , 2008 .

[55]  J. Marsden,et al.  Variational principles for Lie-Poisson and Hamilton-Poincaré equations , 2003 .

[56]  T. Ratiu,et al.  Clebsch optimal control formulation in mechanics , 2011 .

[57]  Laurent Younes,et al.  Geodesic Image Matching: A Wavelet Based Energy Minimization Scheme , 2005, EMMCVPR.

[58]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[59]  Jerrold E. Marsden,et al.  Hamiltonian Reduction by Stages , 2007 .

[60]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[61]  Jerrold E. Marsden,et al.  Optimal Control and Geodesics on Quadratic Matrix Lie Groups , 2008, Found. Comput. Math..

[62]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[63]  Darryl D. Holm,et al.  Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  J. Szenthe,et al.  Topics in Differential Geometry , 1988 .

[65]  Jerrold E. Marsden,et al.  Lagrangian Reduction by Stages , 2001 .

[66]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[67]  Tudor S. Ratiu,et al.  The geometric structure of complex fluids , 2009, Adv. Appl. Math..