Stability Investigation of Large Gate-Width Metamorphic High Electron-Mobility Transistors at Cryogenic Temperature

An investigation of metamorphic high electron mobility transistor stability at cryogenic temperature is presented in this paper. Unlike in the case of two-finger transistors, the measurements of cooled four-finger devices with large gate widths exhibit unstable behavior in the form of steps in the current-voltage characteristics, discontinuities in the transconductance, and reduced gain. This unstable behavior has hampered the reliable realization of low-noise amplifiers for cryogenic applications. We study different gate-width devices with a multiport transistor model, allowing the separation of gate and drain feeder structures from the active part of the transistor. The simulation reveals the presence of resonances in the frequency region of several hundreds of gigahertz. We demonstrate that the resonances disappear when an air bridge is placed across the fingers of the drain feeder structure, and confirm the stabilizing effect of the air bridge both on device and circuit level by cryogenic measurements.

[1]  Matthias Seelmann-Eggebert,et al.  A versatile and cryogenic mHEMT-model including noise , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[2]  J. Shell,et al.  The Cryogenic DC Behavior of Cryo3/AZ1 InP 0.1-by-80-Micrometer-Gate High Electron Mobility Transistor Devices , 2007 .

[3]  T. Mimura,et al.  A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions , 1980 .

[4]  M. Pospieszalski,et al.  Extremely low-noise amplification with cryogenic FETs and HFETs: 1970-2004 , 2005, IEEE Microwave Magazine.

[5]  H. Nyquist,et al.  The Regeneration Theory , 1954, Journal of Fluids Engineering.

[6]  A. Tessmann,et al.  220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications , 2005, IEEE Journal of Solid-State Circuits.

[7]  R. G. Freitag,et al.  A unified analysis of MMIC power amplifier stability , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[8]  S. Weinreb,et al.  Noise parameters and light sensitivity of low-noise high-electron-mobility transistors at 300 and 12.5 K , 1986, IEEE Transactions on Electron Devices.

[9]  Rainer Beck,et al.  Square kilometre array , 2010, Scholarpedia.

[10]  J. E. Fernandez,et al.  A Noise-Temperature Measurement System Using a Cryogenic Attenuator , 1998 .

[11]  A. Cappy,et al.  Noise modeling in submicrometer-gate two-dimensional electron-gas field-effect transistors , 1985, IEEE Transactions on Electron Devices.

[12]  G. M. Resch,et al.  X-band system performance of the very large array , 1988 .

[13]  S. Weinreb,et al.  Cryogenic MMIC low noise amplifiers , 2000 .

[14]  A. Leuther,et al.  A scalable compact small-signal mHEMT model accounting for distributed effects in sub-millimeter wave and terahertz applications , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[15]  Douglas Dawson,et al.  0.1 /spl mu/m InP HEMT devices and MMICs for cryogenic low noise amplifiers from X-band to W-band , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[16]  I. Kallfass,et al.  A single chip broadband noise source for noise measurements at cryogenic temperatures , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[17]  M. H. Somerville,et al.  A physical model for the kink effect in InAlAs/InGaAs HEMTs , 2000 .

[18]  U. Auer,et al.  A consistent physical model for the gate-leakage and breakdown in InAlAs/InGaAs HFETs , 1999, Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362).

[19]  A. Caddemi,et al.  A New Millimeter-Wave Small-Signal Modeling Approach for pHEMTs Accounting for the Output Conductance Time Delay , 2008, IEEE Transactions on Microwave Theory and Techniques.

[20]  S. Nelson,et al.  The S-probe-a new, cost-effective, 4-gamma method for evaluating multi-stage amplifier stability , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[21]  Qiaoran Yang,et al.  Low Frequency Dispersion in InP HEMTs , 2013 .

[22]  Joel Schleeh,et al.  Cryogenic Kink Effect in InP pHEMTs: A Pulsed Measurements Study , 2015, IEEE Transactions on Electron Devices.

[23]  O. Ambacher,et al.  450 GHz amplifier MMIC in 50 nm metamorphic HEMT technology , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[24]  J.A. del Alamo,et al.  Direct correlation between impact ionization and the kink effect in InAlAs/InGaAs HEMTs , 1996, IEEE Electron Device Letters.

[25]  Diego Marti,et al.  Transistor Modeling: Robust Small-Signal Equivalent Circuit Extraction in Various HEMT Technologies , 2013, IEEE Microwave Magazine.

[26]  G. Salmer,et al.  Physical modelling of microwave field effect transistors: a review , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[27]  Colombo R. Bolognesi,et al.  Anomalous behavior of AlGaN∕GaN heterostructure field-effect transistors at cryogenic temperatures: From current collapse to current enhancement with cooling , 2007 .

[28]  R. Lai,et al.  Cryogenically cooled performance of a monolithic 44-GHz InP-based HEMT low-noise amplifier , 1995, IEEE Microwave and Guided Wave Letters.

[29]  Richard Lai,et al.  An MMIC Low-Noise Amplifier Design Technique , 2016, IEEE Transactions on Microwave Theory and Techniques.