The hot corrosion behavior in vanadate environment and thermal cycling behaviors of YTZ and 2GYTZ for thermal barrier coating applications

[1]  L. Yang,et al.  Real-time detection of damage evolution and fracture of EB-PVD thermal barrier coatings under thermal shock: An acoustic emission combined with digital image correlation method , 2020 .

[2]  D. Dingwell,et al.  Thermophysical properties and cyclic lifetime of plasma sprayed SrAl 12 O 19 for thermal barrier coating applications , 2020 .

[3]  Zhou Yanchun,et al.  (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate , 2019, Journal of Materials Science & Technology.

[4]  Jieyan Yuan,et al.  Failure of plasma sprayed nano‐zirconia‐based thermal barrier coatings exposed to molten CaO–MgO–Al 2 O 3 –SiO 2 deposits , 2019, Journal of the American Ceramic Society.

[5]  Xiyong Chen,et al.  Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4 + V2O5 molten salts at 1000 °C , 2019, Corrosion Science.

[6]  Jieyan Yuan,et al.  Thermal and mechanical properties of Ta2O5 doped La2Ce2O7 thermal barrier coatings prepared by atmospheric plasma spraying , 2019, Journal of the European Ceramic Society.

[7]  Jieyan Yuan,et al.  Mechanical properties and thermal cycling behavior of Ta2O5 doped La2Ce2O7 thermal barrier coatings prepared by atmospheric plasma spraying , 2019, Journal of Alloys and Compounds.

[8]  Zhuo Wang,et al.  Effect of Al2O3 modification on the properties of YSZ: Corrosion resistant, wetting and thermal-mechanical properties , 2019, Surface and Coatings Technology.

[9]  Yan Wang,et al.  Annealing induced structural alternations in yttria partially stabilized zirconia , 2019, Surface and Coatings Technology.

[10]  Jieyan Yuan,et al.  Phase and microstructure evolution of SrCeO3 ceramic when exposed to molten V2O5 at 700–1250 ºC , 2018, Corrosion Science.

[11]  G. Liang,et al.  Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications , 2018, Journal of the European Ceramic Society.

[12]  Songbai Liu,et al.  Low–thermal–conductivity and high–toughness CeO2–Gd2O3 co–stabilized zirconia ceramic for potential thermal barrier coating applications , 2018, Journal of the European Ceramic Society.

[13]  Jieyan Yuan,et al.  Phase stability and thermo-physical properties of ZrO2-CeO2-TiO2 ceramics for thermal barrier coatings , 2018, Journal of the European Ceramic Society.

[14]  Jieyan Yuan,et al.  Phase stability, thermo-physical properties and thermal cycling behavior of plasma-sprayed CTZ, CTZ/YSZ thermal barrier coatings , 2018, Ceramics International.

[15]  Jieyan Yuan,et al.  SrCeO3 as a novel thermal barrier coating candidate for high–temperature applications , 2018 .

[16]  Cheng-Long Zhang,et al.  Effects of TiO2 doping on the defect chemistry and thermo-physical properties of Yb2O3 stabilized ZrO2 , 2017 .

[17]  Guangwen Zhou,et al.  Calcium-rich CMAS corrosion induced microstructure development of thermal barrier coatings , 2017 .

[18]  Longhui Deng,et al.  Hot corrosion behaviour of nanostructured zirconia in molten NaVO3 salt , 2017 .

[19]  Chungen Zhou,et al.  Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4 + V2O5 molten salts , 2017 .

[20]  Cheng-Long Zhang,et al.  Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4+V2O5 molten salt , 2017 .

[21]  H. Ochiai,et al.  A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores , 2016 .

[22]  J. Tirillò,et al.  High temperature mechanical characterization of plasma-sprayed zirconia-yttria from conventional and nanostructured powders , 2015 .

[23]  S. Guo,et al.  The hot corrosion behavior of plasma sprayed zirconia coatings stabilized with yttria, ceria, and titania in sodium sulfate and vanadium oxide , 2015 .

[24]  Hossein Edris,et al.  Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt , 2015 .

[25]  Hongbo Guo,et al.  Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration , 2014 .

[26]  Songbai Liu,et al.  Effects of RE3+ Ionic Radius on Monoclinic Phase Content of 8 mol% REO1.5 Partially Stabilized ZrO2 (RE = Yb, Y, Gd, and Nd) Powder Compacts after Annealing at High Temperature , 2014 .

[27]  Shengmin Guo,et al.  An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 °C , 2013 .

[28]  J. Krogstad,et al.  Opportunities for improved TBC durability in the CeO2–TiO2–ZrO2 system , 2013 .

[29]  Raheleh Ahmadi-Pidani,et al.  Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4+V2O5 molten salt , 2012 .

[30]  A. Kobayashi,et al.  Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings , 2012 .

[31]  K. Kunze,et al.  Effect of 7YSZ on the long-term stability of YTaO4 doped ZrO2 system , 2011 .

[32]  J. Krogstad Phase Stability of Zirconia-Based Thermal Barrier Coatings , 2011 .

[33]  Chungen Zhou,et al.  Evaluation of microstructural evolution of thermal barrier coatings exposed to Na2SO4 using impedance spectroscopy , 2011 .

[34]  V. Shklover,et al.  Ta2O5–Y2O3–ZrO2 system: Experimental study and preliminary thermodynamic description , 2011 .

[35]  D. Stöver,et al.  Overview on advanced thermal barrier coatings , 2010 .

[36]  J. Ouyang,et al.  Hot corrosion behaviour of Yb2Zr2O7 ceramic coated with V2O5 at temperatures of 600―800 °C in air , 2010 .

[37]  Yongming Li,et al.  Investigation on the phase stability, sintering and thermal conductivity of Sc2O3–Y2O3–ZrO2 for thermal barrier coating application , 2010 .

[38]  Xihong Hao,et al.  Structure and thermal properties of ZrO2–Ta2O5–Y2O3–Ln2O3 (Ln = Nd, Sm or Gd) ceramics for thermal barrier coatings , 2010 .

[39]  D. Stöver,et al.  Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings , 2008 .

[40]  C. Levi,et al.  Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system , 2007 .

[41]  V. Teixeira,et al.  Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts , 2006 .

[42]  C. Ding,et al.  Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying , 2005 .

[43]  Robert Vassen,et al.  Zirconates as New Materials for Thermal Barrier Coatings , 2004 .

[44]  K. Fritscher,et al.  EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs , 2004 .

[45]  M. Mayo,et al.  Ta2O5/Nb2O5 and Y2O3 Co‐doped Zirconias for Thermal Barrier Coatings , 2004 .

[46]  K. Kokini,et al.  Fracture in single-layer zirconia (YSZ)–bond coat alloy (NiCoCrAlY) composite coatings under thermal shock , 2004 .

[47]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[48]  David Rowcliffe,et al.  The morphology of thermal cracks in brittle materials , 2002 .

[49]  Noam Eliaz,et al.  Hot corrosion in gas turbine components , 2002 .

[50]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: III, Charge‐Compensating Dopants , 1994 .

[51]  T. Tien,et al.  Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2-Y2O3-Ta2O5 , 1991 .

[52]  酒井 達雄,et al.  国際会議「Fracture Mechanics of Ceramics」に出席して , 1991 .

[53]  M. Huth,et al.  Fuel flexibility in gas turbine systems: impact on burner design and performance , 2013 .

[54]  A. F. Renteria,et al.  Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings , 2006 .

[55]  Paul G. Klemens,et al.  Ceramic materials for thermal barrier coatings , 2004 .

[56]  V. Pandolfelli,et al.  Tetragonal zirconia stabilization in the system ZrO2-TiO2-CeO2 , 1989 .

[57]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .