Approximating Geometric Bottleneck Shortest Paths

In a geometric bottleneck shortest path problem, we are given a set S of n points in the plane, and want to answer queries of the following type: Given two points p and q of S and a real number L, compute (or approximate) a shortest path in the subgraph of the complete graph on S consisting of all edges whose length is less than or equal to L. We present efficient algorithms for answering several query problems of this type. Our solutions are based on minimum spanning trees, spanners, the Delaunay triangulation, and planar separators.

[1]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[2]  Hristo Djidjev,et al.  On-Line Algorithms for Shortest Path Problems on Planar Digraphs , 1996, WG.

[3]  Giri Narasimhan,et al.  Approximation Algorithms for the Bottleneck Stretch Factor Problem , 2002, Nord. J. Comput..

[4]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[5]  Michiel Smid,et al.  Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.

[6]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[7]  Joachim Gudmundsson,et al.  Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.

[8]  D. Corneil,et al.  Efficient cluster compensation for lin-kernighan heuristics , 1999 .

[9]  Ivan Stojmenovic,et al.  Handbook of Wireless Networks and Mobile Computing , 2002 .

[10]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[11]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[12]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[13]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[14]  Chuan Yi Tang,et al.  An Optimal Algorithm for Constructing Oriented Voronoi Diagrams and Geographic Neighborhood Graphs , 1990, Inf. Process. Lett..

[15]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[16]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.