Approximating Geometric Bottleneck Shortest Paths
暂无分享,去创建一个
Giri Narasimhan | Michiel H. M. Smid | Prosenjit Bose | Norbert Zeh | Anil Maheshwari | M. Smid | N. Zeh | P. Bose | A. Maheshwari | G. Narasimhan
[1] Andrew Chi-Chih Yao,et al. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..
[2] Hristo Djidjev,et al. On-Line Algorithms for Shortest Path Problems on Planar Digraphs , 1996, WG.
[3] Giri Narasimhan,et al. Approximation Algorithms for the Bottleneck Stretch Factor Problem , 2002, Nord. J. Comput..
[4] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[5] Michiel Smid,et al. Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.
[6] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[7] Joachim Gudmundsson,et al. Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.
[8] D. Corneil,et al. Efficient cluster compensation for lin-kernighan heuristics , 1999 .
[9] Ivan Stojmenovic,et al. Handbook of Wireless Networks and Mobile Computing , 2002 .
[10] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[11] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[12] Uzi Vishkin,et al. On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.
[13] Robert E. Tarjan,et al. Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..
[14] Chuan Yi Tang,et al. An Optimal Algorithm for Constructing Oriented Voronoi Diagrams and Geographic Neighborhood Graphs , 1990, Inf. Process. Lett..
[15] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[16] Michael A. Bender,et al. The LCA Problem Revisited , 2000, LATIN.