Adaptive compressive tomography: A numerical study

We perform several numerical studies for our recently published adaptive compressive tomography scheme [D. Ahn et al. Phys. Rev. Lett. 122, 100404 (2019)], which significantly reduces the number of measurement settings to unambiguously reconstruct any rank-deficient state without any a priori knowledge besides its dimension. We show that both entangled and product bases chosen by our adaptive scheme perform comparably well with recently-known compressed-sensing element-probing measurements, and also beat random measurement bases for low-rank quantum states. We also numerically conjecture asymptotic scaling behaviors for this number as a function of the state rank for our adaptive schemes. These scaling formulas appear to be independent of the Hilbert space dimension. As a natural development, we establish a faster hybrid compressive scheme that first chooses random bases, and later adaptive bases as the scheme progresses. As an epilogue, we reiterate important elements of informational completeness for our adaptive scheme.

[1]  Robert L. Kosut,et al.  Informationally complete measurements from compressed sensing methodology , 2015, ArXiv.

[2]  Andrey A. Sukhorukov,et al.  Scalable on-chip quantum state tomography , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[3]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[4]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[5]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[6]  Jiangwei Shang,et al.  Superfast maximum likelihood reconstruction for quantum tomography , 2016, 1609.07881.

[7]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[8]  Dustin G. Mixon,et al.  Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.

[9]  I. Deutsch,et al.  Strictly-complete measurements for bounded-rank quantum-state tomography , 2016, 1605.02109.

[10]  R. B. Deshmukh,et al.  A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications , 2018, IEEE Access.

[11]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[12]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[13]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[14]  Five Measurement Bases Determine Pure Quantum States on Any Dimension. , 2014, Physical review letters.

[15]  Michal Horodecki,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012 .

[16]  Y. S. Teo,et al.  Quantum-state reconstruction by maximizing likelihood and entropy. , 2011, Physical review letters.

[17]  Yong Siah Teo,et al.  Introduction to Quantum-state Estimation , 2015 .

[18]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[19]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[20]  D Ahn,et al.  Adaptive Compressive Tomography with No a priori Information. , 2018, Physical review letters.

[21]  W. Kolthammer,et al.  Multiphoton Tomography with Linear Optics and Photon Counting. , 2018, Physical review letters.

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  Anthony Laing,et al.  Direct dialling of Haar random unitary matrices , 2015, 1506.06220.

[24]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[25]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[26]  Trac D. Tran,et al.  Low-rank matrices recovery via entropy function , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[27]  C. Caves,et al.  Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.

[28]  Paul Busch,et al.  The determination of the past and the future of a physical system in quantum mechanics , 1989 .

[29]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[30]  M. S. Tame,et al.  Experimentally exploring compressed sensing quantum tomography , 2016, 1611.01189.

[31]  H. Sommers,et al.  Hilbert–Schmidt volume of the set of mixed quantum states , 2003, quant-ph/0302197.

[32]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[33]  Michael M. Wolf,et al.  Constrained Quantum Tomography of Semi-Algebraic Sets with Applications to Low-Rank Matrix Recovery , 2015, 1507.00903.

[34]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[35]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[36]  D. Gross,et al.  Experimental quantum compressed sensing for a seven-qubit system , 2016, Nature Communications.

[37]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[38]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[39]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.