Adaptive compressive tomography: A numerical study
暂无分享,去创建一个
J. Rehacek | Z. Hradil | G. Leuchs | Y. S. Teo | L. L. Sanchez-Soto | J. Řeháček | Z. Hradil | G. Leuchs | H. Jeong | H. Jeong | D. Koutný | D. Ahn | D. Koutny | D. Ahn | L. Sánchez‐Soto | Hyunseok Jeong | Gerd Leuchs | G. Leuchs
[1] Robert L. Kosut,et al. Informationally complete measurements from compressed sensing methodology , 2015, ArXiv.
[2] Andrey A. Sukhorukov,et al. Scalable on-chip quantum state tomography , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).
[3] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[4] Anton van den Hengel,et al. Semidefinite Programming , 2014, Computer Vision, A Reference Guide.
[5] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[6] Jiangwei Shang,et al. Superfast maximum likelihood reconstruction for quantum tomography , 2016, 1609.07881.
[7] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[8] Dustin G. Mixon,et al. Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.
[9] I. Deutsch,et al. Strictly-complete measurements for bounded-rank quantum-state tomography , 2016, 1605.02109.
[10] R. B. Deshmukh,et al. A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications , 2018, IEEE Access.
[11] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[12] Stephen Becker,et al. Quantum state tomography via compressed sensing. , 2009, Physical review letters.
[13] E. Knill,et al. Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.
[14] Five Measurement Bases Determine Pure Quantum States on Any Dimension. , 2014, Physical review letters.
[15] Michal Horodecki,et al. Local random quantum circuits are approximate polynomial-designs: numerical results , 2012 .
[16] Y. S. Teo,et al. Quantum-state reconstruction by maximizing likelihood and entropy. , 2011, Physical review letters.
[17] Yong Siah Teo,et al. Introduction to Quantum-state Estimation , 2015 .
[18] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[19] Stephen P. Boyd,et al. Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.
[20] D Ahn,et al. Adaptive Compressive Tomography with No a priori Information. , 2018, Physical review letters.
[21] W. Kolthammer,et al. Multiphoton Tomography with Linear Optics and Photon Counting. , 2018, Physical review letters.
[22] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[23] Anthony Laing,et al. Direct dialling of Haar random unitary matrices , 2015, 1506.06220.
[24] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[25] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[26] Trac D. Tran,et al. Low-rank matrices recovery via entropy function , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[27] C. Caves,et al. Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.
[28] Paul Busch,et al. The determination of the past and the future of a physical system in quantum mechanics , 1989 .
[29] E. Prugovec̆ki. Information-theoretical aspects of quantum measurement , 1977 .
[30] M. S. Tame,et al. Experimentally exploring compressed sensing quantum tomography , 2016, 1611.01189.
[31] H. Sommers,et al. Hilbert–Schmidt volume of the set of mixed quantum states , 2003, quant-ph/0302197.
[32] F. Mezzadri. How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.
[33] Michael M. Wolf,et al. Constrained Quantum Tomography of Semi-Algebraic Sets with Applications to Low-Rank Matrix Recovery , 2015, 1507.00903.
[34] O. Gühne,et al. 03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .
[35] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[36] D. Gross,et al. Experimental quantum compressed sensing for a seven-qubit system , 2016, Nature Communications.
[37] D. L. Donoho,et al. Compressed sensing , 2006, IEEE Trans. Inf. Theory.
[38] Ruediger Schack,et al. Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.
[39] Steven T. Flammia,et al. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.