Physical Network Systems and Model Reduction

The common structure of a number of physical network systems is identified, based on the incidence structure of the graph, the weights associated to the edges, and the total stored energy. State variables may not only be associated to the vertices, but also to the edges of the graph; in clear contrast with multiagent systems. Structure-preserving model reduction concerns the problem of approximating a complex physical network system by a system of lesser complexity, but within the same class of physical network systems. Two approaches, respectively, based on clustering and on Kron reduction, are explored.

[1]  Arjan van der Schaft,et al.  A graph-theoretical approach for the analysis and model reduction of complex-balanced chemical reaction networks , 2012, Journal of Mathematical Chemistry.

[2]  Rudolf Wegscheider,et al.  Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme , 1901 .

[3]  Claudio De Persis,et al.  An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages , 2014, Autom..

[4]  Florian Dörfler,et al.  Kron Reduction of Graphs With Applications to Electrical Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Arjan van der Schaft,et al.  Structure-preserving model reduction of physical network systems by clustering , 2014, 53rd IEEE Conference on Decision and Control.

[6]  Rud. Wegscheider Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme , 1902 .

[7]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[8]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems on Graphs , 2011, SIAM J. Control. Optim..

[9]  Janusz Bialek,et al.  Power System Dynamics: Stability and Control , 2008 .

[10]  Emrah Biyik,et al.  Area Aggregation and Time Scale Modeling for Sparse Nonlinear Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[11]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[12]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[13]  A. Schaft,et al.  Complex and detailed balancing of chemical reaction networks revisited , 2015, Journal of Mathematical Chemistry.

[14]  Joe H. Chow,et al.  Singular perturbation analysis of systems with sustained high frequency oscillations , 1978, Autom..

[15]  Arjan van der Schaft,et al.  Modeling of physical network systems , 2015, Syst. Control. Lett..

[16]  Florian Dörfler,et al.  Novel results on slow coherency in consensus and power networks , 2013, 2013 European Control Conference (ECC).

[17]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[18]  Takayuki Ishizaki,et al.  Network Clustering for SISO Linear Dynamical Networks via Reaction-Di usion Transformation , 2011 .

[19]  Murat Arcak,et al.  Passivity as a Design Tool for Group Coordination , 2007, IEEE Transactions on Automatic Control.

[20]  Arjan van der Schaft,et al.  A model reduction method for biochemical reaction networks , 2014, BMC Systems Biology.

[21]  Martin Feinberg,et al.  Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity , 1989 .

[22]  Arjan van der Schaft,et al.  On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics , 2011, SIAM J. Appl. Math..

[23]  Aj van der Schaft On model reduction of physical network systems , 2014 .

[24]  M. Kanat Camlibel,et al.  Projection-Based Model Reduction of Multi-Agent Systems Using Graph Partitions , 2014, IEEE Transactions on Control of Network Systems.

[25]  Claudio De Persis,et al.  Pressure Regulation in Nonlinear Hydraulic Networks by Positive and Quantized Controls , 2011, IEEE Transactions on Control Systems Technology.

[26]  Arjan van der Schaft,et al.  Characterization and partial synthesis of the behavior of resistive circuits at their terminals , 2010, Syst. Control. Lett..

[27]  R. M. Murray,et al.  Model reduction of interconnected linear systems , 2009 .