Data Types as Lattices

The meaning of many kinds of expressions in programming languages can be taken as elements of certain spaces of “partial” objects. In this report these spaces are modeled in one universal domain ${\bf P} \omega $, the set of all subsets of the integers. This domain renders the connection of this semantic theory with the ordinary theory of number theoretic (especially general recursive) functions clear and straightforward.

[1]  Ashok K. Chandra Generalized Program Schemas , 1976, SIAM J. Comput..

[2]  Donald M. Kaplan,et al.  Regular Expressions and the Equivalence of Programs , 1969, J. Comput. Syst. Sci..

[3]  Lance Gutteridge Some results on enumeration reductibility. , 1971 .

[4]  Eric G. Wagner,et al.  An algebraic theory of recursive definitions and recursive languages , 1971, STOC.

[5]  ZOHAR MANNA,et al.  The Correctness of Programs , 1969, J. Comput. Syst. Sci..

[6]  G. Markowsky Chain-complete posets and directed sets with applications , 1976 .

[7]  Robert Milne The Formal Semantics of Computer Languages and their Implementations , 1974 .

[8]  Rod M. Burstall,et al.  The algebraic theory of recursive program schemes , 1974, Category Theory Applied to Computation and Control.

[9]  Robin Milner,et al.  Implementation and applications of Scott's logic for computable functions , 1972, Proving Assertions About Programs.

[10]  Zohar Manna,et al.  PROPERTIES OF PROGRAMS AND PARTIAL FUNCTION LOGIC , 1969 .

[11]  Robin Milner,et al.  Proving compiler correctness in a mechanised logic , 1972 .

[12]  Jesse B. Wright Characterization of Recursively Enumerable Sets , 1972, J. Symb. Log..

[13]  J. M. Cadiou,et al.  Recursive definitions of partial functions and their computations , 1972, Proving Assertions About Programs.

[14]  Rod M. Burstall,et al.  Proving Properties of Programs by Structural Induction , 1969, Comput. J..

[15]  Robert L. Constable,et al.  On Classes of Program Schemata , 1972, SIAM J. Comput..

[16]  John McCarthy A Formal Description of a Subset of Algol , 1964 .

[17]  Andrzej Blikle Algorithmically definable functions : a contribution towards the semantics of programming languages , 1971 .

[18]  Robin Milner,et al.  Processes: A Mathematical Model of Computing Agents , 1975 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[21]  Ashok K. Chandra,et al.  The Power of Parallelism and Nondeterminism in Programming , 1974, IFIP Congress.

[22]  H. Barendregt Some extensional term models for combinatory logics and lambda - calculi , 1971 .

[23]  Denis J. Kfoury Comparing Algebraic Structures up to Algorithmic Equivalence , 1972, ICALP.

[24]  R. D. Tennent,et al.  Mathematical semantics and design of programming languages. , 1973 .

[25]  Leonard P. Sasso,et al.  A minimal partial degree , 1973 .

[26]  Luigia Carlucci Aiello,et al.  The semantics of PASCAL in LCF. , 1974 .

[27]  A. Church The calculi of lambda-conversion , 1941 .

[28]  Michael J. C. Gordon Operational reasoning and denotational semantics. , 1975 .

[29]  Ernest Gene Manes,et al.  Category Theory Applied to Computation and Control , 1975, Lecture Notes in Computer Science.

[30]  John Case,et al.  Enumeration reducibility and partial degrees , 1971 .

[31]  Assaf J. Kfoury,et al.  Translatability of Schemas over Restricted Interpretations , 1974, J. Comput. Syst. Sci..

[32]  Suad Alagic Categorical theory of tree processing , 1974, Category Theory Applied to Computation and Control.

[33]  小野 寛晰 Mathematical Theory of ComputationにおけるD. Scottの方法 (プログラムの基礎理論) , 1971 .

[34]  Zohar Manna,et al.  Formalization of Properties of Functional Programs , 1970, JACM.

[35]  Peter Hitchcock An approach to formal reasoning about programs , 1974 .

[36]  James H. Morris,et al.  Lambda-calculus models of programming languages. , 1969 .

[37]  Willem P. de Roever,et al.  A Calculus for Recursive Program Schemes , 1972, ICALP.

[38]  C. Böhm,et al.  λ-Calculus and Computer Science Theory , 1975, Lecture Notes in Computer Science.

[39]  Christopher P. Wadsworth Approximate Reduction and Lambda Calculus Models , 1978, SIAM J. Comput..

[40]  Peter J. Landin,et al.  PROGRAMS AND THEIR PROOFS: AN ALGEBRAIC APPROACH, , 1968 .

[41]  Ashok K. Chandra,et al.  Degrees of translatability and canonical forms in program schemas: Part I , 1974, STOC '74.

[42]  P. J. Landin The Mechanical Evaluation of Expressions , 1964, Comput. J..

[43]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[44]  F. Lockwood Morris,et al.  Advice on structuring compilers and proving them correct , 1973, POPL.

[45]  Jean-Jacques Lévy,et al.  Mechanizable Proofs about Parallel Processes , 1973, SWAT.