A two-step uncontracted determinantal effective Hamiltonian-based SO–CI method

We present a new two-step uncontracted spin-orbit configuration interaction (CI) method which automatically accounts for spin-orbit polarization effects on multiconfigurational wave functions by selecting the single excitations having a significant spin-orbit interaction with a chosen determinantal reference space. This approach is in the line of a conventional two-step method, as a sophisticated correlation treatment in a scalar relativistic approximation is carried out in the first step. In the second step, we define a model space which includes a set of reference configurations able to represent all the wanted states along with singly excited configurations selected with the spin-orbit (SO) operator. We then exploit the first-step calculation in order to include correlation effects via an effective Hamiltonian technique and diagonalize the full matrix on the determinantal basis. The method combines the advantages of both one-step and conventional two-step SO–CI methods; it intends to treat efficiently ...

[1]  Yoon Sup Lee,et al.  Kramers' restricted hartree—fock method for polyatomic molecules using ab initio relativistic effective core potentials with spin—orbit operators , 1992 .

[2]  H. Fagerli,et al.  On the combination of ECP-based CI calculations with all-electron spin-orbit mean-field integrals , 1998 .

[3]  A. B. Alekseyev,et al.  Comparison of spin-orbit configuration interaction methods employing relativistic effective core potentials for the calculation of zero-field splittings of heavy atoms with a 2Po ground state , 1998 .

[4]  Russell M. Pitzer,et al.  Spin-Orbit Configuration Interaction Using the Graphical Unitary Group Approach and Relativistic Core Potential and Spin-Orbit Operators , 1999 .

[5]  B. A. Hess,et al.  Investigation of electron correlation on the theoretical prediction of zero-field splittings of 2Π molecular states , 1982 .

[6]  L. Seijo,et al.  Ab initio model potential calculations on the electronic spectrum of Ni2+‐doped MgO including correlation, spin–orbit and embedding effects , 1996 .

[7]  L. Foldy,et al.  On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit , 1950 .

[8]  C. Teichteil,et al.  Ab initio molecular calculations including spin-orbit coupling. II. Molecular test on the InH molecule and application to the g states of the Ar2* excimer , 1983 .

[9]  Ishikawa,et al.  Relativistic coupled-cluster method: Intrashell excitations in the f2 shells of Pr+3 and U+4. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  L. Visscher,et al.  ON THE DISTINCTION BETWEEN SCALAR AND SPIN-ORBIT RELATIVISTIC EFFECTS , 1999 .

[11]  Chang Kon Kim,et al.  Ab Initio Study of the X-+ RCOY Displacement Reactions with R = H, CH3and X, Y = Cl, Br , 2000 .

[12]  A. Zaitsevskii,et al.  Spin-orbit coupling in the D1Pi d3Pi complex of 23Na39K , 1999 .

[13]  J. Bearden,et al.  Atomic energy levels , 1965 .

[14]  H. Werner,et al.  Spin-orbit interaction in heavy group 13 atoms and TlAr , 1997 .

[15]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[16]  Jean-Paul Malrieu,et al.  Intermediate Hamiltonians as a new class of effective Hamiltonians , 1985 .

[17]  M. Esser Direct MRCI method for the calculation of relativistic many-electron wavefunctions. I. General formalism , 1984 .

[18]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[19]  Robert A. Satten,et al.  An Introduction to the Theory of Atomic Spectra , 1974 .

[20]  H. Fagerli,et al.  Ab initio calculations of the ${} ^2{\bi P}_{{\b 1}\over {\b 2}} \hbox{-}{} ^2{\bi P}_{{\b 3} \over {\b 2}} $ splitting in the thallium atom , 1997 .

[21]  C. Marian,et al.  Relativistic all-electron ab initio calculations on the platinum hydride molecule , 1994 .

[22]  P. Pyykkö Recent developments in the theory of f-element molecules , 1987 .

[23]  M. Pélissier,et al.  Relativistic calculations of excited states of molecular iodine , 1994 .

[24]  B. Schimmelpfennig,et al.  Reduction of uranyl by hydrogen: an ab initio study , 1999 .

[25]  Bruce E. Bursten,et al.  The Electronic Structure of Actinide-Containing Molecules: A Challenge to Applied Quantum Chemistry , 1991 .

[26]  M. Casarrubios,et al.  The ab initio model potential method : Third-series transition metal elements , 1998 .

[27]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[28]  L. Maron,et al.  On the accuracy of averaged relativistic shape-consistent pseudopotentials , 1998 .

[29]  P. Szalay,et al.  Theoretical prediction of the spin-orbit splitting in the NCO, NCS, HCCO and HCCS radicals , 1997 .

[30]  A. B. Alekseyev,et al.  Spin–orbit configuration interaction study of the potential energy curves and radiative lifetimes of the low‐lying states of bismuth hydride , 1994 .

[31]  Russell M. Pitzer,et al.  Electronic-structure methods for heavy-atom molecules , 1988 .

[32]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[33]  P. Pyykkö,et al.  Bonding and electronic structure in diatomic ThO: Quasirelativistic effective core potential calculations , 1988 .

[34]  H. Stoll,et al.  Ab initio pseudopotential study of Yb and YbO , 1992 .

[35]  K. Balasubramanian Chapter 119 Relativistic effects and electronic structure of lanthanide and actinide molecules , 1994 .

[36]  M. Pélissier,et al.  One‐center expansion for pseudopotential matrix elements , 1988 .

[37]  P. A. Christiansen,et al.  Low-lying 0+ states of bismuth hydride , 1997 .

[38]  P. A. Christiansen,et al.  Relativistic ab initio molecular structure calculations including configuration interaction with application to six states of TlH , 1982 .

[39]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[40]  A. Zaitsevskii,et al.  Quasirelativistic transition moment calculations using the multipartitioning perturbation theory: B0+(3Π)→X0+(1Σ+) transitions in IF and ICl , 1999 .

[41]  C. Marian,et al.  The fine-structure splitting of the thallium atomic ground state: LS- versus jj-coupling , 1996 .

[42]  K. Balasubramanian Relativistic configuration interaction calculations for polyatomics: Applications to PbH2, SnH2, and GeH2 , 1988 .

[43]  Michael Dolg,et al.  Ab initio pseudopotentials for Hg through Rn , 1991 .

[44]  W. C. Ermler,et al.  Electronic structure of actinocenes and actinofullerenes , 1994 .

[45]  Peter Schwerdtfeger,et al.  Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .

[46]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[47]  W. Schwarz,et al.  Molecular spinors from the quasi-relativistic pseudopotential approach , 1979 .