Efficient computation of highly oscillatory integrals with Hankel kernel

In this paper, we consider the evaluation of two kinds of oscillatory integrals with a Hankel function as kernel. We first rewrite these integrals as the integrals of Fourier-type. By analytic continuation, these Fourier-type integrals can be transformed into the integrals on 0, +∞), the integrands of which are not oscillatory, and decay exponentially fast. Consequently, the transformed integrals can be efficiently computed by using the generalized Gauss-Laguerre quadrature rule. Moreover, the error analysis for the presented methods is given. The efficiency and accuracy of the methods have been demonstrated by both numerical experiments and theoretical results.

[1]  David Levin,et al.  Analysis of a collocation method for integrating rapidly oscillatory functions , 1997 .

[2]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[3]  Shuhuang Xiang,et al.  Fast integration of highly oscillatory integrals with exotic oscillators , 2009, Math. Comput..

[4]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[5]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[6]  Congpei An,et al.  On the evaluation of infinite integrals involving Bessel functions , 2014, Appl. Math. Comput..

[7]  G. A. Evans,et al.  Some theoretical aspects of generalised quadrature methods , 2003, J. Complex..

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  G. Milovanović,et al.  Interpolation Processes: Basic Theory and Applications , 2008 .

[10]  Hongchao Kang,et al.  Fast Computation of Singular Oscillatory Fourier Transforms , 2014 .

[11]  G. Arfken,et al.  Mathematical methods for physicists 6th ed. , 1996 .

[12]  Gradimir V. Milovanović,et al.  Numerical Calculation of Integrals Involving Oscillatory and Singular Kernels and Some Applications of Quadratures , 1998 .

[13]  Shuhuang Xiang,et al.  On the calculation of highly oscillatory integrals with an algebraic singularity , 2010, Appl. Math. Comput..

[14]  Ruyun Chen,et al.  On the implementation of the asymptotic Filon-type method for infinite integrals with oscillatory Bessel kernels , 2014, Appl. Math. Comput..

[15]  Daan Huybrechs,et al.  A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..

[16]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[17]  Shuhuang Xiang,et al.  Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature , 2012 .

[18]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[19]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[20]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[21]  Ruyun Chen Numerical approximations to integrals with a highly oscillatory Bessel kernel , 2012 .

[22]  Ruyun Chen,et al.  On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions , 2013, J. Comput. Appl. Math..

[23]  David Levin,et al.  Fast integration of rapidly oscillatory functions , 1996 .

[24]  R. Piessens,et al.  Modified clenshaw-curtis method for the computation of Bessel function integrals , 1983 .

[25]  A. H. Stroud,et al.  Methods of Numerical Integration—Second Edition (Philip J. Davis and Philip Rabinowitz) , 1986 .

[26]  Daan Huybrechs,et al.  Asymptotic expansions and fast computation of oscillatory Hilbert transforms , 2011, Numerische Mathematik.

[27]  Aleksandar S. Cvetković,et al.  Special Classes of Orthogonal Polynomials and Corresponding Quadratures of Gaussian Type , 2012 .

[28]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[29]  J. R. Webster,et al.  A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .

[30]  Shuhuang Xiang,et al.  Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications , 2011 .

[31]  Shuhuang Xiang,et al.  On the evaluation of Cauchy principal value integrals of oscillatory functions , 2010, J. Comput. Appl. Math..

[32]  Shuhuang Xiang,et al.  Efficient evaluation of oscillatory Bessel Hilbert transforms , 2014, J. Comput. Appl. Math..

[33]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[34]  Sheehan Olver,et al.  Numerical approximation of vector-valued highly oscillatory integrals , 2007 .